首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications.  相似文献   

2.

Background  

Acrodonta consists of Agamidae and Chamaeleonidae that have the characteristic acrodont dentition. These two families and Iguanidae sensu lato are members of infraorder Iguania. Phylogenetic relationships and historical biogeography of iguanian lizards still remain to be elucidated in spite of a number of morphological and molecular studies. This issue was addressed by sequencing complete mitochondrial genomes from 10 species that represent major lineages of acrodont lizards. This study also provided a good opportunity to compare molecular evolutionary modes of mitogenomes among different iguanian lineages.  相似文献   

3.

Background  

Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids.  相似文献   

4.

Background  

Several lines of evidence suggest that codon usage in the Drosophila saltans and D. willistoni lineages has shifted towards a less frequent use of GC-ending codons. Introns in these lineages show a parallel shift toward a lower GC content. These patterns have been alternatively ascribed to either a shift in mutational patterns or changes in the definition of preferred and unpreferred codons in these lineages.  相似文献   

5.

Background  

Relaxed molecular clock models allow divergence time dating and "relaxed phylogenetic" inference, in which a time tree is estimated in the face of unequal rates across lineages. We present a new method for relaxing the assumption of a strict molecular clock using Markov chain Monte Carlo to implement Bayesian modeling averaging over random local molecular clocks. The new method approaches the problem of rate variation among lineages by proposing a series of local molecular clocks, each extending over a subregion of the full phylogeny. Each branch in a phylogeny (subtending a clade) is a possible location for a change of rate from one local clock to a new one. Thus, including both the global molecular clock and the unconstrained model results, there are a total of 22n-2 possible rate models available for averaging with 1, 2, ..., 2n - 2 different rate categories.  相似文献   

6.

Background  

The fungus-growing ant-microbe symbiosis consists of coevolving microbial mutualists and pathogens. The diverse fungal lineages that these ants cultivate are attacked by parasitic microfungi of the genus Escovopsis. Previous molecular analyses have demonstrated strong phylogenetic congruence between the ants, the ants-cultivated fungi and the garden pathogen Escovopsis at ancient phylogenetic levels, suggesting coevolution of these symbionts. However, few studies have explored cophylogenetic patterns between these symbionts at the recent phylogenetic levels necessary to address whether these parasites are occasionally switching to novel hosts or whether they are diversifying with their hosts as a consequence of long-term host fidelity.  相似文献   

7.

Background  

Mites (Acari) have traditionally been treated as monophyletic, albeit composed of two major lineages: Acariformes and Parasitiformes. Yet recent studies based on morphology, molecular data, or combinations thereof, have increasingly drawn their monophyly into question. Furthermore, the usually basal (molecular) position of one or both mite lineages among the chelicerates is in conflict to their morphology, and to the widely accepted view that mites are close relatives of Ricinulei.  相似文献   

8.

Aim

To date, few studies have examined the phylogenetics of Corbicula clams in their native range and the environmental parameters influencing their distribution, although this could provide great insights into the biological adaptation and invasion dynamics of Corbicula clams. We sought to identify the genetic lineages of native Corbicula clams and elucidate the environmental factors shaping the distributions of identified lineages.

Location

China, mainly the Yangtze River Basin.

Methods

The alignment comprised 558 COI sequences including samples from China and 222 COI sequences from published studies. This dataset was used to generate phylogenetic trees and compare population diversity. We used dbRDA method to assess the relationship between these COI data and environmental factors measured to identify the important factors affecting Corbicula's distribution.

Results

The COI phylogenetic tree delineated the monophyly of 3 major COI clades and 77 distinct COI haplotypes in the Yangtze River Basin. The invasive lineage C/S (FW17) was not identified in our sampling in China, while invasive lineages A/R (FW5 = Hap6), B (FW1 = Hap17) and Rlc (FW4 = Hap43) were identified, abundant and widely distributed in the middle and lower reaches of Yangtze River. Focusing on populations from Yangtze River Basin, both the COI haplotype and nucleotide diversity in the lakes along the Yangtze River increased with longitude, except for the river mouth population. The AMOVA tests showed significant differentiation between the middle and lower reaches of the Yangtze River and among populations. The dbRDA results suggested that the parameter chloride explained most of the spatial COI haplotype distribution variation in the Yangtze River Basin, with the three invasive lineages tolerating broad fluctuations of salinity (chloride levels ranging from 4 to 60 mg/L).

Conclusions

The Corbicula COI haplotypes found within the Yangtze River Basin had distinct distribution preferences, with the invasive androgenetic lineages being the most abundant and widely distributed. Genetic diversity was higher in this native region than in invaded areas in Europe and America, while it decreased with increasing distance from the river mouth. Salinity appeared to be the main environmental factor shaping the COI haplotype distribution of Corbicula lineages within their native range.  相似文献   

9.

Background  

Reproductive proteins are central to the continuation of all mammalian species. The evolution of these proteins has been greatly influenced by environmental pressures induced by pathogens, rival sperm, sexual selection and sexual conflict. Positive selection has been demonstrated in many of these proteins with particular focus on primate lineages. However, the mammalia are a diverse group in terms of mating habits, population sizes and germ line generation times. We have examined the selective pressures at work on a number of novel reproductive proteins across a wide variety of mammalia.  相似文献   

10.
11.

Background  

Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura.  相似文献   

12.

Background  

In the flowering plants, many polyploid species complexes display evolutionary radiation. This could be facilitated by gene flow between otherwise separate evolutionary lineages in contact zones. Achillea collina is a widespread tetraploid species within the Achillea millefolium polyploid complex (Asteraceae-Anthemideae). It is morphologically intermediate between the relic diploids, A. setacea-2x in xeric and A. asplenifolia-2x in humid habitats, and often grows in close contact with either of them. By analyzing DNA sequences of two single-copy nuclear genes and the genomic AFLP data, we assess the allopolyploid origin of A. collina-4x from ancestors corresponding to A. setacea-2x and A. asplenifolia-2x, and the ongoing backcross introgression between these diploid progenitor and tetraploid progeny lineages.  相似文献   

13.

Background  

The sperm annulus is a septin-based fibrous ring structure connecting the midpiece and the principal piece of the mammalian sperm flagellum. Although ultrastructural abnormalities and functional importance of the annulus have been addressed in Sept4-null mutant mice and a subset of human patients with asthenospermia syndrome, little is known about how the structure is assembled and positioned to the midpiece-principal piece junction during mammalian sperm flagellum development.  相似文献   

14.

Background  

Species of the Drosophila obscura species group (e.g., D. pseudoobscura, D. subobscura) have served as favorable models in evolutionary studies since the 1930's. Despite numbers of studies conducted with varied types of data, the basal phylogeny in this group is still controversial, presumably owing to not only the hypothetical 'rapid radiation' history of this group, but also limited taxon sampling from the Old World (esp. the Oriental and Afrotropical regions). Here we reconstruct the phylogeny of this group by using sequence data from 6 loci of 21 species (including 16 Old World ones) covering all the 6 subgroups of this group, estimate the divergence times among lineages, and statistically test the 'rapid radiation' hypothesis.  相似文献   

15.

Background  

Doubly uniparental inheritance (DUI) is an atypical system of animal mtDNA inheritance found only in some bivalves. Under DUI, maternally (F genome) and paternally (M genome) transmitted mtDNAs yield two distinct gender-associated mtDNA lineages. The oldest distinct M and F genomes are found in freshwater mussels (order Unionoida). Comparative analyses of unionoid mitochondrial genomes and a robust phylogenetic framework are necessary to elucidate the origin, function and molecular evolutionary consequences of DUI. Herein, F and M genomes from three unionoid species, Venustaconcha ellipsiformis, Pyganodon grandis and Quadrula quadrula have been sequenced. Comparative genomic analyses were carried out on these six genomes along with two F and one M unionoid genomes from GenBank (F and M genomes of Inversidens japanensis and F genome of Lampsilis ornata).  相似文献   

16.

Background  

Determining an absolute timescale for avian evolutionary history has proven contentious. The two sources of information available, paleontological data and inference from extant molecular genetic sequences (colloquially, 'rocks' and 'clocks'), have appeared irreconcilable; the fossil record supports a Cenozoic origin for most modern lineages, whereas molecular genetic estimates suggest that these same lineages originated deep within the Cretaceous and survived the K-Pg (Cretaceous-Paleogene; formerly Cretaceous-Tertiary or K-T) mass-extinction event. These two sources of data therefore appear to support fundamentally different models of avian evolution. The paradox has been speculated to reflect deficiencies in the fossil record, unrecognized biases in the treatment of genetic data or both. Here we attempt to explore uncertainty and limit bias entering into molecular divergence time estimates through: (i) improved taxon (n = 135) and character (n = 4594 bp mtDNA) sampling; (ii) inclusion of multiple cladistically tested internal fossil calibration points (n = 18); (iii) correction for lineage-specific rate heterogeneity using a variety of methods (n = 5); (iv) accommodation of uncertainty in tree topology; and (v) testing for possible effects of episodic evolution.  相似文献   

17.

Background  

The phylogeographic distribution of human mitochondrial DNA variations allows a genetic approach to the study of modern Homo sapiens dispersals throughout the world from a female perspective. As a new contribution to this study we have phylogenetically analysed complete mitochondrial DNA(mtDNA) sequences from 42 human lineages, representing major clades with known geographic assignation.  相似文献   

18.

Background  

We recently reported a highly unexpected positive correlation between the fixation probability of nonsynonymous mutations (estimated by ω) and neutral mutation rate (estimated by K s) in mammalian lineages. However, this positive correlation was observed for lineages with relatively long divergence time such as the human-mouse lineage, and was not found for very short lineages such as the human-chimpanzee lineage. It was previously unclear how to interpret this discrepancy. It may indicate that the positive correlation between ω and K s in long lineages is a false finding. Alternatively, it may reflect a biologically meaningful difference between various lineages. Finally, the lack of positive correlation in short lineages may be the result of methodological artifacts.  相似文献   

19.

Background  

Three types of cell lines have been established from mouse blastocysts: embryonic stem (ES) cells, trophoblast stem (TS) cells, and extra-embryonic endoderm (XEN) cells, which have the potential to differentiate into their respective cognate lineages. ES cells can differentiate in vitro not only into somatic cell lineages but into extra-embryonic lineages, including trophectoderm and extra-embryonic endoderm (ExEn) as well. TS cells can be established from ES cells by the artificial repression of Oct3/4 or the upregulation of Cdx2 in the presence of FGF4 on feeder cells. The relationship between these embryo-derived XEN cells and ES cell-derived ExEn cell lines remains unclear, although we have previously reported that overexpression of Gata4 or Gata6 induces differentiation of mouse ES cells into extra-embryonic endoderm in vitro.  相似文献   

20.

Background  

Staphylococcus aureus infection in patients with cystic fibrosis (CF) is frequent and may be due to colonization by a few pathogenic lineages. Systematic genotyping of all isolates, methicillin-susceptible S. aureus (MSSA) as well as methicillin-resistant S. aureus (MRSA) is necessary to identify such lineages and follow their evolution in patients. Multiple-locus variable-number tandem repeat analysis (MLVA/VNTR) was used to survey S. aureus clinical isolates in a French paediatric CF centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号