首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The symbiotic interaction between Rhizobium etli and Phaseolus vulgaris, the common bean plant, ultimately results in the formation of nitrogen-fixing nodules. Many aspects of the intermediate and late stages of this interaction are still poorly understood. The R. etli relA gene was identified through a genome-wide screening for R. etli symbiotic mutants. RelA has a pivotal role in cellular physiology, as it catalyzes the synthesis of (p)ppGpp, which mediates the stringent response in bacteria. The synthesis of ppGpp was abolished in an R. etli relA mutant strain under conditions of amino acid starvation. Plants nodulated by an R. etli relA mutant had a strongly reduced nitrogen fixation activity (75% reduction). Also, at the microscopic level, bacteroid morphology was altered, with the size of relA mutant bacteroids being increased compared to that of wild-type bacteroids. The expression of the sigma(N)-dependent nitrogen fixation genes rpoN2 and iscN was considerably reduced in the relA mutant. In addition, the expression of the relA gene was negatively regulated by RpoN2, the symbiosis-specific sigma(N) copy of R. etli. Therefore, an autoregulatory loop controlling the expression of relA and rpoN2 seems operative in bacteroids. The production of long- and short-chain acyl-homoserine-lactones by the cinIR and raiIR systems was decreased in an R. etli relA mutant. Our results suggest that relA may play an important role in the regulation of gene expression in R. etli bacteroids and in the adaptation of bacteroid physiology.  相似文献   

2.
3.
Judged by migration of its lipopolysaccharide (LPS) in gel electrophoresis, the O antigen of Rhizobium etli mutant strain CE166 was apparently of normal size. However, its LPS sugar composition and staining of the LPS bands after electrophoresis indicated that the proportion of its LPS molecules that possessed O antigen was only 40% of the wild-type value. Its LPS also differed from the wild type by lacking quinovosamine (2-amino-2,6-dideoxyglucose). Both of these defects were due to a single genetic locus carrying a Tn5 insertion. The deficiency in O-antigen amount, but not the absence of quinovosamine, was suppressed by transferring into this strain recombinant plasmids that shared a 7.8-kb stretch of the R. etli CE3 lps genetic region alpha, even though this suppressing DNA did not carry the genetic region mutated in strain CE166. Strain CE166 gave rise to pseudonodules on legume host Phaseolus vulgaris, whereas the mutant suppressed by DNA from lps region alpha elicited nitrogen-fixing nodules. However, the nodules in the latter case developed slowly and were widely dispersed. Two other R. etli mutants that had one-half or less of the normal amount of O antigen also gave rise to pseudonodules on P. vulgaris. The latter strains were mutated in lps region alpha and could be restored to normal LPS content and normal symbiosis by complementation with wild-type DNA from this region. Hence, the symbiotic role of LPS requires near-normal abundance of O antigen and may require a structural feature conferred by quinovosamine.  相似文献   

4.
Rhizobium etli, as well as some other rhizobia, presents nitrogenase reductase (nifH) gene reiterations. Several R. etli strains studied in this laboratory showed a unique organization and contained two complete nifHDK operons (copies a and b) and a truncated nifHD operon (copy c). Expression analysis of lacZ fusion demonstrated that copies a and b in strain CFN42 are transcribed at lower levels than copy c, although this copy has no discernible role during nitrogen fixation. To increase nitrogenase production, we constructed a chimeric nifHDK operon regulated by the strong nifHc promoter sequence and expressed it in symbiosis with the common bean plant (Phaseolus vulgaris), either cloned on a stably inherited plasmid or incorporated into the symbiotic plasmid (pSym). Compared with the wild-type strain, strains with the nitrogenase overexpression construction assayed in greenhouse experiments had, increased nitrogenase activity (58% on average), increased plant weight (32% on average), increased nitrogen content in plants (15% at 32 days postinoculation), and most importantly, higher seed yield (36% on average), higher nitrogen content (25%), and higher nitrogen yield (72% on average) in seeds. Additionally, expression of the chimeric nifHDK operon in a poly-β-hydroxybutyrate-negative R. etli strain produced an additive effect in enhancing symbiosis. To our knowledge, this is the first report of increased seed yield and nutritional content in the common bean obtained by using only the genetic material already present in Rhizobium.  相似文献   

5.
Rhizobiaceas are bacteria that fix nitrogen during symbiosis with plants. This symbiotic relationship is crucial for the nitrogen cycle, and understanding symbiotic mechanisms is a scientific challenge with direct applications in agronomy and plant development. Rhizobium etli is a bacteria which provides legumes with ammonia (among other chemical compounds), thereby stimulating plant growth. A genome-scale approach, integrating the biochemical information available for R. etli, constitutes an important step toward understanding the symbiotic relationship and its possible improvement. In this work we present a genome-scale metabolic reconstruction (iOR363) for R. etli CFN42, which includes 387 metabolic and transport reactions across 26 metabolic pathways. This model was used to analyze the physiological capabilities of R. etli during stages of nitrogen fixation. To study the physiological capacities in silico, an objective function was formulated to simulate symbiotic nitrogen fixation. Flux balance analysis (FBA) was performed, and the predicted active metabolic pathways agreed qualitatively with experimental observations. In addition, predictions for the effects of gene deletions during nitrogen fixation in Rhizobia in silico also agreed with reported experimental data. Overall, we present some evidence supporting that FBA of the reconstructed metabolic network for R. etli provides results that are in agreement with physiological observations. Thus, as for other organisms, the reconstructed genome-scale metabolic network provides an important framework which allows us to compare model predictions with experimental measurements and eventually generate hypotheses on ways to improve nitrogen fixation.  相似文献   

6.
7.
Phaseolus vulgaris L. (common bean) is nodulated by rhizobia present in the fields around the Seibersdorf laboratory despite the fact that common bean has not been grown for a long time. Using PCR analysis with repetitive primers, plasmid profiles, nifH profiles, PCR-RFLP analysis of the 16S rRNA gene and of the 16S rRNA-23S rRNA intergenic spacer and the nodulation phenotype, two well-differentiating groups could be distinguished. One group showed high similarity to Rhizobium sp. R602sp, isolated from common bean in France, while the other showed the same characteristics as R. etli . We detected little variation in the symbiotic regions but found higher diversity when using approaches targeting the whole genome. Many isolates obtained in this study might have diverged from a limited number of strains, therefore the Austrian isolates showed high saprophytic and nodulation competence in that particular soil.  相似文献   

8.
A mutant strain (CTNUX4) of Rhizobium etli carrying Tn5 unable to grow with ammonium as the sole nitrogen source was isolated and characterized. Sequence analysis showed that Tn5 is inserted into a trpB (tryptophan synthase)-homologous gene. When tested on the roots of Phaseolus vulgaris, strain CTNUX4 was able to induce only small, slightly pink, ineffective (Fix-) nodules. However, under free-living conditions, strain CTNUX4 was unable to produce flavonoid-inducible lipo-chitin oligosaccharides (Nod factors) unless tryptophan was added to the growth medium. These data and histological observations indicate that the lack of tryptophan biosynthesis affects the symbiotic behavior of R. etli.  相似文献   

9.
Plant and Soil - Homospermidine is known to be the most abundant polyamine in root nodules of Phaseolus vulgaris induced by Rhizobium tropici. In addition, homospermidine is involved in the stress...  相似文献   

10.
Abstract A Gram-negative sporulating thermophilic anaerobe, designated AB11Ad, was isolated from the heated waters of the Great Artesian Basin of Australia. It grew on a variety of carbohydrates including glucose, starch, and dextran and produced a thermostable and thermoactive extracellular endo-dextranase. The enzyme was produced more actively under pH controlled continuous culture conditions than under batch conditions. Ammonium sulfate precipitated crude dextranase exhibited a temperature optimum of 70 °C and a pH optimum between 5 and 6. The half life was ~ 6.5 h at 75 °C and 2 h at 80 °C at pH 5.0 and in the absence of added dextran. 16S rRNA sequence analysis indicated that isolate AB1 lAd was a member of the genus Thermoanaerobacter .  相似文献   

11.
A Tn5-induced mutant strain (CTNUX5) of Rhizobium etli unable to grow with ammonium as the sole nitrogen source was isolated and characterized. Sequence analysis showed that Tn5 is inserted into an argC-homologous gene. Unlike its wild-type parent (strain CE3), the mutant strain CTNUX5 had an absolute dependency on arginine to grow. The argC gene was cloned from the wild-type strain CE3, and the resulting plasmid, pAR207, after transformation was shown to relieve the arginine auxotrophy of strain CTNUX5. Unlike strain CE3 or CTNUX5-pAR207, strain CTNUX5 showed undetectable levels of N-acetyl-gamma-glutamylphosphate reductase activity. Unless arginine was added to the growth medium, strain CTNUX5 was unable to produce flavonoid-inducible lipo-chitin oligosaccharides (nodulation factors) and to induce nodules or nodulelike structures on the roots of Phaseolus vulgaris.  相似文献   

12.
Proteomics techniques were used to identify the underlying mechanism of the early stage of symbiosis between the common bean (Phaseolus vulgaris L.) and bacteria. Proteins from roots of common beans inoculated with bacteria were separated using two-dimensional polyacrylamide gel electrophoresis and identified using mass spectrometry. From 483 protein spots, 29 plant and 3 bacterial proteins involved in the early stage of symbiosis were identified. Of the 29 plant proteins, the expression of 19 was upregulated and the expression of 10 was downregulated. Upregulated proteins included those involved in protein destination/storage, energy production, and protein synthesis; whereas the downregulated proteins included those involved in metabolism. Many upregulated proteins involved in protein destination/storage were chaperonins and proteasome subunits. These results suggest that defense mechanisms associated with induction of chaperonins and protein degradation regulated by proteasomes occur during the early stage of symbiosis between the common bean and bacteria.  相似文献   

13.
The potential benefit to be derived from seed inoculation of Phaseolus vulgaris beans with effective strains of Rhizobium phaseoli, was investigated in field experiments over three years on a site low in soil nitrogen and lacking indigenous effective strains of R. phaseoli. Inoculation with R. phaseoli (strain RCR 3644) produced significant increases in nodulation, nitrogenase activity and plant growth in all experiments. In trials in 1978 and 1979, with cv. Seafarer, inoculation, in the absence of nitrogen fertiliser doubled seed yields. In 1978, the seed yields from inoculated beans without nitrogen fertiliser (1–6 t/ha) were not significantly different from those obtained with uninoculated beans receiving the optimum nitrogen fertiliser treatment of 120 kg N/ha (1–75 t/ha). In 1979, with lower rainfall favouring more efficient utilisation of nitrogen fertiliser, inoculation gave seed yields (1–88 t/ha) equivalent to those obtained with 60 kg N/ha (1–70 t/ha) but significantly less than with 120 kg N/ha (2–88 t/ha). More precise estimates from nitrogen response curves showed that inoculation supplied the fertiliser equivalent of 105 and 70 kg N/ha in 1978 and 1979 respectively. In both years, significant benefits were also obtained by the combination of inoculation and nitrogen fertiliser. In a separate experiment in 1979, with four R. phaseoli strains inoculated onto eight bean cultivars, three were highly effective nitrogen fixers on all cultivars. Two strains (RCR 3644 and NVRS 963A) each increased mean yields, in the absence of nitrogen fertiliser, from 1–39 t/ha uninoculated to c. 2–5 t/ha inoculated whilst strain RCR 3622 was outstanding with a mean yield of 3-0 t/ha. An analysis of the nitrogen content of seed showed that gains from nitrogen fixation were 37–57 kg N/ha/growing cycle for the combination RCR 3644 with cv. Seafarer. However, 106 kg N/ha/growing cycle was recorded for the combination RCR 3622 and cv. Aurora.  相似文献   

14.
 A method to isolate mutants with derepressed expression of cytochrome oxidases and better symbiotic performance is presented. A mutant of Rhizobium etli, CFN030, isolated by its azide-resistant phenotype, was obtained by transposon Tn5-mob mutagenesis. This mutant has a derepressed expression of cytochrome aa3, higher respiratory activities when cultured microaerobically and an improved symbiotic nitrogen fixation capacity. This phenotype was similar to the previously described mutant CFN037, which was isolated by its increased capacity to oxidize N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) [Soberón M et al. (1990) J Bacteriol 172:1676–1680]. We show here that although both mutants have a similar symbiotic phenotype, they are affected in different genes. Strain CFN030 has the Tn5 inserted in the chromosome while in strain CFN037 the transposon was located in plasmid b. Cytochrome spectral analysis of both mutant strains in the post-exponential phase of growth, showed the expression of an additional terminal oxidase (cbb3) that is not expressed in the wild-type strain. Received: 10 April 1995/Received revision: 21 August 1995/Accepted: 7 September1995  相似文献   

15.
Nitrogen uptake, distribution and remobilization in the vegetative and reproductive parts of the plant were studied in bean (Phaseolus vulgaris L.) cultivars Negro Argel and Rio Tibagi inoculated with either Rhizobium strain C05 or 127 K-17. Greenhouse grown plants were supplied with 2.5 mg N (plant)−1 day−1 as KNO3 or K15NO3 and the relative contribution to total plant nitrogen of mineral and symbiotically fixed nitrogen was determined. Control plants included those entirely dependent on fixed nitrogen as well as uninoculated plants supplied with 10 mg N (plant)−1 day−1. No differences were observed between inoculated treatments in total nitrate reductase activity and in the amount of mineral nitrogen absorbed, but there were considerable differences in the contribution of fixed nitrogen. Nitrogen fixation supplied from 58 to 72% of the total nitrogen assimilated during the bean growth cycle and the symbiotic combinations fixed most of their nitrogen (66 to 78% of total nitrogen) after flowering. Maximum uptake of mineral nitrogen was in the 15-day-period between flowering and mid-podfill (47 to 58% of total mineral nitrogen). Nitrogen partitioning varied with Rhizobium strains, and inoculation with strain C05 increased the nitrogen harvest index of both cultivars. Applied mineral nitrogen had a variable effect and in cv. Negro Argel was more beneficial to vegetative growth, resulting in smaller nitrogen harvest indices. Seed yield was not increased by heavy nitrogen fertilization. In contrast, cv. Rio Tibagi always benefited from nitrogen applications. Among the various nitrogen sources supplying the grain, the most important one was the fixed nitrogen translocated directly from nodules or after a rapid transfer through leaves, representing from 60 to 64% of the total nitrogen incorporated into the seeds.  相似文献   

16.
Sequence analysis of the rpoN (2)- fixA intergenic region in the genome of Rhizobium etli CNPAF512 has uncovered three genes involved in nitrogen fixation, namely nifU, nifS and nifW. These genes are preceded by an ORF that is highly conserved among nitrogen-fixing bacteria. It encodes a putative gene product of 105 amino acids, belonging to the HesB-like protein family. A phylogenetic analysis of members of the HesB-like protein family showed that the R. etli HesB-like protein clusters with polypeptides encoded by ORFs situated upstream of the nifUS nitrogen fixation regions in the genomes of other diazotrophs. The R. etli ORF that encodes the HesB-like protein was designated iscN. iscN is co-transcribed with nifU and nifS, and is preferentially expressed under free-living microaerobic conditions and in bacteroids. Expression is regulated by the alternative sigma factor RpoN and the enchancer-binding protein NifA. A R. etli iscN mutant displays a reduction in nitrogen fixation capacity of 90% compared to the wild-type strain. This Nif(-) phenotype could be complemented by the introduction of intact copies of R. etli iscN.  相似文献   

17.
The genetic structure of Rhizobium etli biovar phaseoli was determined for five populations in three different locations in the state of Morelos, Mexico, by using starch gel electrophoresis for five to nine polymorphic loci. Two populations were sampled during two different years from nodules of cultivated and wild common bean plants (Phaseolus vulgaris). The three other populations were associated with wild runner beans (P. coccineus) and sampled during 1988. The Rhizobium populations differ genetically both among sites and among populations within the same site in different years, as shown by differences in allelic frequencies, genetic differentiation analysis, and differences in electrotypes. The total genetic diversity for the five populations during 1988 was H = 0.487; there were also high levels of genetic variation within each population. We found the highest linkage disequilibrium in a global analysis for all the populations. At a local scale, we also found significant linkage disequilibrium in two populations, although the distribution of the D' suggest some recombination at a local scale. The other three rhizobium populations exhibit low linkage disequilibrium. A cluster analysis (UPGMA) of pairwise genetic distances showed that bacteria isolated from most wild Phaseolus spp. are grouped by population, whereas those obtained from cultivated P. vulgaris are very heterogeneous. The analysis of the genetic structure of Rhizobium strains may allow the identification of strains that are naturally well adapted to a wide range of different environments, which may be useful for agricultural purposes or as a starting point for developing improved Rhizobium strains.  相似文献   

18.
19.
Sharma  Shashi B.  Sakadevan  K.  Sharma  Sunila 《Plant and Soil》1997,189(2):221-229
Azide-resistant (AzR) mutants of Rhizobium loti strain NZP2037 were isolated. Mutations conferring azide resistance (azi) appeared at a frequency of 0.5 × 10-7. Nine AzR mutants of R. loti were characterised for their symbiotic behaviour with Lotus pedunculatus plants. In comparison to the wild type parent strain, AzR mutants exhibited either similar or higher symbiotic effectiveness. The azi mutations which enhanced nitrogen fixation as well as improving shoot dry weight of the inoculated plants also increased nodulation. Unlike several azi mutations in Escherichia coli, these azi mutations did not alter sensitivity of R. loti to phenethyl alcohol. One of the AzR mutants exhibited higher micro-aerobic, N, N, N, N-tetramethyl-p-phenylenediamine (TMPD) oxidase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号