首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial steps in N-linked glycosylation involve the synthesis of a lipid-linked core oligosaccharide followed by the transfer of the core glycan to nascent polypeptides in the endoplasmic reticulum (ER). Here, we describe alg11, a new yeast glycosylation mutant that is defective in the last step of the synthesis of the Man(5)GlcNAc(2)-PP-dolichol core oligosaccharide on the cytosolic face of the ER. A deletion of the ALG11 gene leads to poor growth and temperature-sensitive lethality. In an alg11 lesion, both Man(3)GlcNAc(2)-PP-dolichol and Man(4)GlcNAc(2)-PP-dolichol are translocated into the ER lumen as substrates for the Man-P-dolichol-dependent sugar transferases in this compartment. This leads to a unique family of oligosaccharide structures lacking one or both of the lower arm alpha1,2-linked Man residues. The former are elongated to mannan, whereas the latter are poor substrates for outerchain initiation by Ochlp (Nakayama, K.-I., Nakanishi-Shindo, Y., Tanaka, A., Haga-Toda, Y., and Jigami, Y. (1997) FEBS Lett. 412, 547-550) and accumulate largely as truncated biosynthetic end products. The ALG11 gene is predicted to encode a 63.1-kDa membrane protein that by indirect immunofluorescence resides in the ER. The Alg11 protein is highly conserved, with homologs in fission yeast, worms, flies, and plants. In addition to these Alg11-related proteins, Alg11p is also similar to Alg2p, a protein that regulates the addition of the third mannose to the core oligosaccharide. All of these Alg11-related proteins share a 23-amino acid sequence that is found in over 60 proteins from bacteria to man whose function is in sugar metabolism, implicating this sequence as a potential sugar nucleotide binding motif.  相似文献   

2.
N-linked glycosylation requires the synthesis of an evolutionarily conserved lipid-linked oligosaccharide (LLO) precursor that is essential for glycoprotein folding and stability. Despite intense research, several of the enzymes required for LLO synthesis have not yet been identified. Here we show that two poorly characterized yeast proteins known to be required for the synthesis of the LLO precursor, GlcNAc2-PP-dolichol, interact to form an unusual hetero-oligomeric UDP-GlcNAc transferase. Alg13 contains a predicted catalytic domain, but lacks any membrane-spanning domains. Alg14 spans the membrane but lacks any sequences predicted to play a direct role in sugar catalysis. We show that Alg14 functions as a membrane anchor that recruits Alg13 to the cytosolic face of the ER, where catalysis of GlcNAc2-PP-dol occurs. Alg13 and Alg14 physically interact and under normal conditions, are associated with the ER membrane. Overexpression of Alg13 leads to its cytosolic partitioning, as does reduction of Alg14 levels. Concomitant Alg14 overproduction suppresses this cytosolic partitioning of Alg13, demonstrating that Alg14 is both necessary and sufficient for the ER localization of Alg13. Further evidence for the functional relevance of this interaction comes from our demonstration that the human ALG13 and ALG14 orthologues fail to pair with their yeast partners, but when co-expressed in yeast can functionally complement the loss of either ALG13 or ALG14. These results demonstrate that this novel UDP-GlcNAc transferase is a unique eukaryotic ER glycosyltransferase that is comprised of at least two functional polypeptides, one that functions in catalysis and the other as a membrane anchor.  相似文献   

3.
Sanyal S  Frank CG  Menon AK 《Biochemistry》2008,47(30):7937-7946
Transbilayer movement, or flip-flop, of lipids across the endoplasmic reticulum (ER) is required for membrane biogenesis, protein glycosylation, and GPI anchoring. Specific ER membrane proteins, flippases, are proposed to facilitate lipid flip-flop, but no ER flippase has been biochemically identified. The glycolipid Glc 3Man 9GlcNAc 2-PP-dolichol is the oligosaccharide donor for protein N-glycosylation reactions in the ER lumen. Synthesis of Glc 3Man 9GlcNAc 2-PP-dolichol is initiated on the cytoplasmic side of the ER and completed on the lumenal side, requiring flipping of the intermediate Man 5GlcNAc 2-PP-dolichol (M5-DLO) across the ER. Here we report the reconstitution of M5-DLO flipping in proteoliposomes generated from Triton X-100-extracted Saccharomyces cerevisiae microsomal proteins. Flipping was assayed by using the lectin Concanavalin A to capture M5-DLOs that had been translocated from the inner to the outer leaflet of the vesicles. M5-DLO flipping in the reconstituted system was ATP-independent and trypsin-sensitive and required a membrane protein(s) that sedimented at approximately 4 S. Man 7GlcNAc 2-PP-dolichol, a higher-order lipid intermediate, was flipped >10-fold more slowly than M5-DLO at 25 degrees C. Chromatography on Cibacron Blue dye resin enriched M5-DLO flippase activity approximately 5-fold and resolved it from both the ER glycerophospholipid flippase activity and the genetically identified flippase candidate Rft1 [Helenius, J., et al. (2002) Nature 415, 447-450]. The latter result indicates that Rft1 is not the M5-DLO flippase. Our data (i) demonstrate that the ER has at least two distinct flippase proteins, each specifically capable of translocating a class of phospholipid, and (ii) provide, for the first time, a biochemical means of identifying the M5-DLO flippase.  相似文献   

4.
N-linked glycosylation begins in the endoplasmic reticulum with the synthesis of a highly conserved dolichol-linked oligosaccharide precursor. The UDP-GlcNAc glycosyltransferase catalyzing the second sugar addition of this precursor consists in most eukaryotes of at least two subunits, Alg14 and Alg13. Alg14 is a membrane protein that recruits the soluble Alg13 catalytic subunit from the cytosol to the face of the endoplasmic reticulum (ER) membrane where this reaction occurs. Here, we investigated the membrane topology of Saccharomyces cerevisiae Alg14 and its requirements for ER membrane association. Alg14 is predicted by most algorithms to contain one or more transmembrane spanning helices (transmembrane domains (TMDs)). We provide evidence that Alg14 contains a C-terminal cytosolic tail and an N terminus that resides within the ER lumen. However, we also demonstrate that Alg14 lacking this TMD is functional and remains peripherally associated with ER membranes, suggesting that additional domains can mediate ER association. These conclusions are based on the functional analysis of Alg13/Alg14 chimeras containing Alg13 fused at either end of Alg14 or truncated Alg14 variants lacking the predicted TMD; protease protection assays of Alg14 in intact ER membranes; and extraction of Alg14-containing ER membranes with high pH. These yeast Alg13-Alg14 chimeras recapitulate the phylogenetic diversity of Alg13-Alg14 domain arrangements that evolved in some protozoa. They encode single polypeptides containing an Alg13 domain fused to Alg14 domain in either orientation, including those lacking the Alg14 TMD. Thus, this Alg13-Alg14 UDP-GlcNAc transferase represents an unprecedented example of a bipartite glycosyltransferase that evolved by both fission and fusion.  相似文献   

5.
N-Glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to man. Here we identify and characterize two essential yeast proteins having homology to bacterial glycosyltransferases, designated Alg13p and Alg14p, as being required for the formation of GlcNAc(2)-PP-dolichol (Dol), the second step in the biosynthesis of the unique lipid-linked core oligosaccharide. Down-regulation of each gene led to a defect in protein N-glycosylation and an accumulation of GlcNAc(1)-PP-Dol in vivo as revealed by metabolic labeling with [(3)H]glucosamine. Microsomal membranes from cells repressed for ALG13 or ALG14, as well as detergent-solubilized extracts thereof, were unable to catalyze the transfer of N-acetylglucosamine from UDP-GlcNAc to [(14)C]GlcNAc(1)-PP-Dol, but did not impair the formation of GlcNAc(1)-PP-Dol or GlcNAc-GPI. Immunoprecipitating Alg13p from solubilized extracts resulted in the formation of GlcNAc(2)-PP-Dol but required Alg14p for activity, because an Alg13p immunoprecipitate obtained from cells in which ALG14 was down-regulated lacked this activity. In Western blot analysis it was demonstrated that Alg13p, for which no well defined transmembrane segment has been predicted, localizes both to the membrane and cytosol; the latter form, however, is enzymatically inactive. In contrast, Alg14p is exclusively membrane-bound. Repression of the ALG14 gene causes a depletion of Alg13p from the membrane. By affinity chromatography on IgG-Sepharose using Alg14-ZZ as bait, we demonstrate that Alg13-myc co-fractionates with Alg14-ZZ. The data suggest that Alg13p associates with Alg14p to a complex forming the active transferase catalyzing the biosynthesis of GlcNAc(2)-PP-Dol.  相似文献   

6.
Protein N-glycosylation begins with the assembly of a lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER) membrane. The first two steps of LLO biosynthesis are catalyzed by a functional multienzyme complex comprised of the Alg7 GlcNAc phosphotransferase and the heterodimeric Alg13/Alg14 UDP-GlcNAc transferase on the cytosolic face of the ER. In the Alg13/14 glycosyltransferase, Alg14 recruits cytosolic Alg13 to the ER membrane through interaction between their C-termini. Bioinformatic analysis revealed that eukaryotic Alg14 contains an evolved N-terminal region that is missing in bacterial orthologs. Here, we show that this N-terminal region of Saccharomyces cerevisiae Alg14 localize its green fluorescent protein fusion to the ER membrane. Deletion of this region causes defective growth at 38.5°C that can be partially complemented by overexpression of Alg7. Coimmunoprecipitation demonstrated that the N-terminal region of Alg14 is required for direct interaction with Alg7. Our data also show that Alg14 lacking the N-terminal region remains on the ER membrane through a nonperipheral association, suggesting the existence of another membrane-binding site. Mutational studies guided by the 3D structure of Alg14 identified a conserved α-helix involved in the second membrane association site that contributes to an integral interaction and protein stability. We propose a model in which the N- and C-termini of Alg14 coordinate recruitment of catalytic Alg7 and Alg13 to the ER membrane for initiating LLO biosynthesis.  相似文献   

7.
The initial lipid-linked oligosaccharide Glc(3)Man(9)GlcNAc(2)-dolichyl pyrophosphate (Dol-PP) for N-glycan is synthesized and assembled at the membrane of the endoplasmic reticulum (ER) and subsequently transferred to a nascent polypeptide by the oligosaccharide transferase complex. We have identified an ALG3 homolog (HpALG3) coding for a dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase in the methylotrophic yeast Hansenula polymorpha. The detailed analysis of glycan structure by linkage-specific mannosidase digestion showed that HpALG3 is responsible for the conversion of Man5GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP, the first step to attach a mannose to the lipid-linked oligosaccharide in the ER. The N-glycosylation pathway of H. polymorpha has been remodeled by deleting the HpALG3 gene in the Hpoch1 null mutant strain blocked in the yeast-specific outer mannose chain synthesis and by introducing an ER-targeted Aspergillus saitoi alpha-1,2-mannosidase gene. This glycoengineered H. polymorpha strain produced glycoproteins mainly containing trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core backbone of various human-type N-glycans. The results demonstrate the high potential of H. polymorpha to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.  相似文献   

8.
The dolichyl-P-mannose:dolichyl-PP-heptasaccharide alpha-mannosyltransferase (2.4.1.130), which catalyzes the transfer of mannose from dolichyl-P-mannose to the Man5(GlcNAc)2-PP-dolichol acceptor glycolipid, was solubilized from pig aorta microsomes with 0.5% NP-40 and purified 985-fold by a variety of conventional methods. The partially purified enzyme had a pH optimum of 6.5 and required Ca2+, at an optimum concentration of 8-10 mM, for activity. Mn2+ was only 20% as effective as Ca2+, and Mg2+ was inhibitory. The mannosyltransferase activity was also inhibited by the addition of EDTA to the enzyme, but this inhibition was fully reversible by the addition of Ca2+. The enzyme was quite specific for dolichyl-P-mannose as the mannosyl donor and Man5(GlcNAc)2-PP-dolichol as the mannosyl acceptor. The Km values for dolichyl-P-mannose and the acceptor lipid Man5(GlcNAc)2-PP-dolichol were 1.8 and 1.6 microM. On Bio-Gel P-4 columns and by HPLC, the radiolabeled oligosaccharide formed during incubation of dolichyl-P-[14C]mannose and unlabeled Man5(GlcNAc)2-PP-dolichol with the purified enzyme behaved like Man6(GlcNAc)2. This octasaccharide was susceptible to digestion by endoglucosaminidase H, indicating that the newly added mannose was attached to the 6-linked mannose in an alpha 1,3-linkage. This linkage was further confirmed by acetolysis of the oligosaccharide product [i.e., Man6(GlcNAc)2], which gave a labeled disaccharide as the major product (greater than 90%).  相似文献   

9.
The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for N-linked glycosylation of proteins in the endoplasmic reticulum (ER), is catalyzed by different glycosyltransferases located at the membrane of the ER. We report on the identification and characterization of the ALG12 locus encoding a novel mannosyltransferase responsible for the addition of the alpha-1,6 mannose to dolichol-linked Man7GlcNAc2. The biosynthesis of the highly branched oligosaccharide follows an ordered pathway which ensures that only completely assembled oligosaccharide is transferred from the lipid anchor to proteins. Using the combination of mutant strains affected in the assembly pathway of lipid-linked oligosaccharides and overexpression of distinct glycosyltransferases, we were able to define the substrate specificities of the transferases that are critical for branching. Our results demonstrate that branched oligosaccharide structures can be specifically recognized by the ER glycosyltransferases. This substrate specificity of the different transferases explains the ordered assembly of the complex structure of lipid-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum.  相似文献   

10.
The lipid-linked oligosaccharides synthesized in the presence of the alpha-glucosidase inhibitors, 1-deoxynojirimycin (DJN) and N-methyl-1-deoxynojirimycin (MDJN), were compared in IEC-6 intestinal epithelial cells in culture. HPLC analysis of the oligosaccharides obtained before and after exhaustive jack bean alpha-mannosidase digestion indicates that control and MDJN-treated cells synthesize similar amounts of Glc3Man9GlcNAc2-PP-dolichol. In contrast, the formation of this compound is greatly reduced in DJN-treated cells, the major lipid-linked oligosaccharide found being Man9GlcNAc2-PP-dolichol. The decreased availability of the preferred donor for protein glycosylation may account for the impaired glycosylation and secretion of certain glycoproteins in the presence of DJN.  相似文献   

11.
In order to purify the glycosyltransferases involved in the assembly of lipid-linked oligosaccharides and to be able to study the acceptor substrate specificity of these enzymes, methods were developed to prepare and purify a variety of lipid-linked oligosaccharides, differing in the structure of the oligosaccharide moiety. Thus, Man9 (GlcNAc)2-pyrophosphoryl-dolichol was prepared by isolation and enzymatic synthesis using porcine pancreatic microsomes, while Glc3Man9(GlcNAc)2-PP-dolichol was isolated from Madin-Darby canine kidney cells. Treatment of these oligosaccharide lipids with a series of selected glycosidases led to the preparation of Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6(Man alpha 1,3)Man alpha 1,6]Man beta 1,4GlcNAc beta 1,4GlcNAc-PP-dolichol; Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6]Man beta 1,4GlcNAc beta 1, 4GlcNac-PP-dolichol; and Man alpha 1,6(Man alpha 1,3)Man alpha 1, 6[Man alpha 1,3]Man beta 1,4GlcNAc-beta 1,4GlcNAc-PP-dolichol. The preparation, isolation, and characterization of each of these lipid-linked oligosaccharide substrates are described.  相似文献   

12.
The synthesis and oligosaccharide processing of the glycoproteins of SA11 rotavirus in infected Ma104 cells was examined. Rotavirus assembles in the rough endoplasmic reticulum (RER) and encodes two glycoproteins: VP7, a component of the outer viral capsid, and NCVP5, a nonstructural protein. A variety of evidence suggests the molecules are limited to the ER, a location consistent with the high mannose N-linked oligosaccharides modifying these proteins. VP7 and NCVP5 were shown to be integral membrane proteins. In an in vitro translation system supplemented with dog pancreas microsomes, they remained membrane associated after high salt treatment and sodium carbonate-mediated release of microsomal contents. In infected cells, the oligosaccharide processing of these molecules proceeded in a time-dependent manner. For VP7, Man8GlcNAc2 and Man6GlcNAc2 were the predominant intracellular species after a 5-min pulse with [3H]mannose and a 90 min chase, while in contrast, trimming of NCVP5 halted at Man8GlcNAc2. VP7 on mature virus was processed to Man5GlcNAc2. It is suggested that the alpha-mannosidase activities responsible for the formation of these structures reside in the ER. In the presence of the energy inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP), processing of VP7 and the vesicular stomatitis virus G protein was blocked at Man8GlcNAc2. After a 20-min chase of [3H]mannose-labeled molecules followed by addition of CCCP, trimming of VP7 could continue while processing of G protein remained blocked. Thus, an energy-sensitive translocation step within the ER may mark the divergence of the processing pathways of these glycoproteins.  相似文献   

13.
N-Glycans in nearly all eukaryotes are derived by transfer of a precursor Glc(3)Man(9)GlcNAc(2) from dolichol (Dol) to consensus Asn residues in nascent proteins in the endoplasmic reticulum. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide-lipid properly, and the alg9 mutant, accumulates Man(6)GlcNAc(2)-PP-Dol. High-field (1)H NMR and methylation analyses of Man(6)GlcNAc(2) released with peptide-N-glycosidase F from invertase secreted by Deltaalg9 yeast showed its structure to be Manalpha1,2Manalpha1,2Manalpha1, 3(Manalpha1,3Manalpha1,6)-Manbeta1,4GlcNAcbeta1, 4GlcNAcalpha/beta, confirming the addition of the alpha1,3-linked Man to Man(5)GlcNAc(2)-PP-Dol prior to the addition of the final upper-arm alpha1,6-linked Man. This Man(6)GlcNAc(2) is the endoglycosidase H-sensitive product of the Alg3p step. The Deltaalg9 Hex(7-10)GlcNAc(2) elongation intermediates were released from invertase and similarly analyzed. When compared with alg3 sec18 and wild-type core mannans, Deltaalg9 N-glycans reveal a regulatory role for the Alg3p-dependent alpha1,3-linked Man in subsequent oligosaccharide-lipid and glycoprotein glycan maturation. The presence of this Man appears to provide structural information potentiating the downstream action of the endoplasmic reticulum glucosyltransferases Alg6p, Alg8p and Alg10p, glucosidases Gls1p and Gls2p, and the Golgi Och1p outerchain alpha1,6-Man branch-initiating mannosyltransferase.  相似文献   

14.
Burda  P; Aebi  M 《Glycobiology》1998,8(5):455-462
The biosynthesis of the lipid-linked oligosaccharide substrate for N- linked protein glycosylation follows a highly conserved pathway at the membrane of the endoplasmic reticulum. Based on the synthetic growth defect in combination with a reduced oligosaccharyltransferase activity (wbp1), we have identified alg10 mutant strains which accumulate lipid- linked Glc2Man9GlcNAc2. We cloned the corresponding wild-type gene and show in a novel in vitro assay that Alg10p is a dolichyl-phosphoglucose- dependent glucosyltransferase which adds the terminal alpha-1,2 glucose to the lipid-linked Glc2Man9GlcNAc2 oligosaccharide. Hypoglycosylation of secreted proteins in alg10 deletion strains demonstrates that the terminal alpha-1,2-linked glucose residue is a key element in substrate recognition by the oligosaccharyltransferase. This ensures that primarily completely assembled oligosaccharide is transferred to protein.   相似文献   

15.
The mannose analogue, 1-deoxymannojirimycin, which inhibits Golgi alpha-mannosidase I but not endoplasmic reticulum (ER) alpha-mannosidase has been used to determine the role of the ER alpha-mannosidase in the processing of the asparagine-linked oligosaccharides on glycoproteins in intact cells. In the absence of the inhibitor, the predominant oligosaccharide structures found on the ER glycoprotein 3-hydroxy-3-methylglutaryl-CoA reductase in UT-1 cells are single isomers of Man6GlcNAc and Man8GlcNAc. In the presence of 150 microM 1-deoxymannojirimycin, the Man8GlcNAc2 isomer accumulates indicating that the 1-deoxymannojirimycin-resistant ER alpha-mannosidase is responsible for the conversion of Man9GlcNAc2 to Man8GlcNAc2 on reductase. The processing of Man8GlcNAc2 to Man6GlcNAc2, however, must be attributed to a 1-deoxymannojirimycin-sensitive alpha-mannosidase. When cells were radiolabeled with [2-(3)H]mannose for 15 h in the presence of 1-deoxymannojirimycin and then further incubated for 3 h in nonradioactive medium without inhibitor, the Man8GlcNAc2 oligosaccharides which accumulated during the labeling period were partially trimmed to Man6GlcNAc. This finding suggests that a second alpha-mannosidase, sensitive to 1-deoxymannojirimycin, resides in the crystalloid ER and is responsible for trimming the reductase oligosaccharide chain from Man8GlcNAc2 to Man6GlcNAc2. To determine if ER alpha-mannosidase is responsible for trimming the oligosaccharides of all glycoproteins from Man9GlcNAc to Man8GlcNAc, the total asparagine-linked oligosaccharides of rat hepatocytes labeled with [2-(3)H]mannose in the presence or absence of 1.0 mM 1-deoxymannojirimycin were examined. the inhibitor prevented the formation of complex oligosaccharides and caused a 30-fold increase in the amount of Man9GlcNAc2 and a 13-fold increase in the amount of Man8GlcNAc2 present on secreted glycoproteins. This result suggests that only one-third of the secreted glycoproteins is initially processed by ER alpha-mannosidase, and two-thirds are processed by Golgi alpha-mannosidase I or another 1-deoxymannojirimycin-sensitive alpha-mannosidase. The inhibitor caused only a 2.6-fold increase in the amount of Man9GlcNAc2 on cellular glycoproteins suggesting that a higher proportion of these glycoproteins are initially processed by the ER alpha-mannosidase. We conclude that some, but not all, hepatocyte glycoproteins are substrates for ER alpha-mannosidase which catalyzes the removal of a specific mannose residue from Man9GlcNAc2 to form a single isomer of Man8GlcNAc2.  相似文献   

16.
Kim S  Hwang SK  Dwek RA  Rudd PM  Ahn YH  Kim EH  Cheong C  Kim SI  Park NS  Lee SM 《Glycobiology》2003,13(3):147-157
The structures of the oligosaccharides attached to arylphorin from Chinese oak silkworm, Antheraea pernyi, have been determined. Arylphorin, a storage protein present in fifth larval hemolymph, contained 4.8% (w/w) of carbohydrate that was composed of Fuc:GlcNAc:Glc:Man=0.2:4.0:1.4:13.6 moles per mole protein. Four moles of GlcNAc in oligomannose-type oligosaccharides strongly suggest that the protein contains two N-glycosylation sites. Normal-phase HPLC and mass spectrometry oligosaccharide profiles confirmed that arylphorin contained mainly oligomannose-type glycans as well as truncated mannose-type structures with or without fucosylation. Interestingly, the most abundant oligosaccharide was monoglucosylated Man9-GlcNAc2, which was characterized by normal-phase HPLC, mass spectrometry, Aspergillus saitoi alpha-mannosidase digestion, and 1H 600 MHz NMR spectrometry. This glycan structure is not normally present in secreted mammalian glycoproteins; however, it has been identified in avian species. The Glc1Man9GlcNAc2 structure was present only in arylphorin, whereas other hemolymph proteins contained only oligomannose and truncated oligosaccharides. The oligosaccharide was also detected in the arylphorin of another silkworm, Bombyx mori, suggesting a specific function for the Glc1Man9GlcNAc2 glycan. There were no processed glucosylated oligosaccharides such as Glc1Man5-8GlcNAc2. Furthermore, Glc1Man9GlcNAc2 was not released from arylophorin by PNGase F under nondenaturing conditions, suggesting that the N-glycosidic linkage to Asn is protected by the protein. Glc1Man9GlcNAc2 may play a role in the folding of arylphorin or in the assembly of hexamers.  相似文献   

17.
Matsuo I  Ito Y 《Carbohydrate research》2003,338(21):2163-2168
The high-mannose type decasaccharide (Man(8)GlcNAc(2)), the proposed ligand of ER residing mannosidase-like proteins (MLP), and its monoglycosylated homologue (alpha-Glc(1)Man(8)GlcNAc(2)) were synthesized. The oligosaccharide assembly was performed in a convergent and stereoselective manner, using three oligosaccharide components, a core trisaccharide having a beta-mannoside bond, a liner mannotriose, and a branched mannotetraose.  相似文献   

18.
The precursor oligosaccharide donor for protein N-glycosylation in eukaryotes, Glc3Man9GlcNAc(2)-P-P-dolichol, is synthesized in two stages on both leaflets of the rough endoplasmic reticulum (ER). There is good evidence that the level of dolichyl monophosphate (Dol-P) is one rate-controlling factor in the first stage of the assembly process. In the current topological model it is proposed that ER proteins (flippases) then mediate the transbilayer movement of Man-P-Dol, Glc-P-Dol, and Man5GlcNAc(2)-P-P-Dol from the cytoplasmic leaflet to the lumenal leaflet. The rate of flipping of the three intermediates could plausibly influence the conversion of Man5GlcNAc(2)-P-P-Dol to Glc3Man(9)GlcNAc(2)-P-P-Dol in the second stage on the lumenal side of the rough ER. This article reviews the current understanding of the enzymes involved in the de novo biosynthesis of Dol-P and other polyisoprenoid glycosyl carrier lipids and speculates about the role of membrane proteins and enzymes that could be involved in the transbilayer movement of the lipid intermediates and the recycling of Dol-P and Dol-P-P discharged during glycosylphosphatidylinositol anchor biosynthesis, N-glycosylation, and O- and C-mannosylation reactions on the lumenal surface of the rough ER.  相似文献   

19.
The second step of dolichol-linked oligosaccharide synthesis in the N-linked glycosylation pathway at the endoplasmic reticulum (ER) membrane is catalyzed by an unusual hetero-oligomeric UDP-N-acetylglucosamine transferase that in most eukaryotes is comprised of at least two subunits, Alg13p and Alg14p. Alg13p is the cytosolic and catalytic subunit that is recruited to the ER by the membrane protein Alg14p. We show that in Saccharomyces cerevisiae, cytosolic Alg13p is very short-lived, whereas membrane-associated Alg13 is relatively stable. Cytosolic Alg13p is a target for proteasomal degradation, and the failure to degrade excess Alg13p leads to glycosylation defects. Alg13p degradation does not require ubiquitin but instead, requires a C-terminal domain whose deletion results in Alg13p stability. Conversely, appending this sequence onto normally long-lived beta-galactosidase causes it to undergo rapid degradation, demonstrating that this C-terminal domain represents a novel and autonomous degradation motif. These data lead to the model that proteasomal degradation of excess unassembled Alg13p is an important quality control mechanism that ensures proper protein complex assembly and correct N-linked glycosylation.  相似文献   

20.
N-glycans are synthesized in both yeast and mammals through the ordered assembly of a lipid-linked core Glc(3)Man(9)GlcNAc(2) structure that is subsequently transferred to a nascent protein in the endoplasmic reticulum. Once folded, glycoproteins are then shuttled to the Golgi, where additional but divergent processing occurs in mammals and fungi. We cloned the Pichia pastoris homolog of the ALG3 gene, which encodes the enzyme that converts Man(5)GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP. Deletion of this gene in an och1 mutant background resulted in the secretion of glycoproteins with a predicted Man(5)GlcNAc(2) structure that could be trimmed to Man(3)GlcNAc(2) by in vitro alpha-1,2-mannosidase treatment. However, several larger glycans ranging from Hex(6)GlcNAc(2) to Hex(12)GlcNAc(2) were also observed that were recalcitrant to an array of mannosidase digests. These results contrast the far simpler glycan profile found in Saccharomyces cerevisiae alg3-1 och1, indicating diverging Golgi processing in these two closely related yeasts. Finally, analysis of the P. pastoris alg3 deletion mutant in the presence and absence of the outer chain initiating Och1p alpha-1,6-mannosyltransferase activity suggests that the PpOch1p has a broader substrate specificity compared to its S. cerevisiae counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号