首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conversion from methane to methanol is catalyzed by methane monooxygenase (MMO) in methanotrophic bacteria. Earlier work on the crystal structures of the MMO hydroxylase component (MMOH) from Methylococcus capsulatus (Bath) at 4??°C and –160??°C has revealed two different core arrangements for the diiron active site. To ascertain the generality of these results, we have now carried out the first structural characterization on MMOH from Methylosinus trichosporium OB3b. Our X-ray absorption spectroscopic (XAS) analysis suggests the presence of two Fe-Fe distances of about 3?Å and 3.4?Å, which are proposed to reflect two populations of MMOH molecules with either a bis(μ-hydroxo)(μ-carboxylato)- or a (μ-hydroxo)(μ-carboxylato)diiron(III) core structure, respectively. The observation of these two different core structures, together with the crystallographic results of the MMOH from Methylococcus capsulatus (Bath), suggests the presence of an equilibrium that may reflect a core flexibility that is required to accommodate the various intermediates in the catalytic cycle of the enzyme. XAS studies on the binding of component B (MMOB) to the hydroxylase component show that MMOB does not perturb either this equilibrium or the gross structure of the oxidized diiron site in MMOH.  相似文献   

2.
Methanotrophs have promising applications in bioremediation and in the production of fuel-related chemicals due to their nonspecific enzyme, methane monooxygenase (MMO). The optimal conditions for cell growth and production of the soluble from of MMO (sMMO) were determined from batch cultivations of an obligatory methanotrophs, Methylosinus trichosporium OB3b, in shake flasks and a 5-L bioreactor. It was confirmed that a copper deficiency is essential for the formation of the cytoplasmic sMNO. Optimum cell growth without added copper was observed at pH 6.0-7.0, temperature of 30-34 degrees C, and phosphate concentration of 10-40 mM. In the bioreactor experiments, external CO(2) addition eliminated the long lag period observed in the absence of added CuSO(4), i.e., prior to the exponential cell growth phase. When methane was continuously supplied, the profile of the cell growth showed two different phases depending on the availability of nitrate, an initial fast exponential growth phase (specific growth rate, mu = 0.08 h(-1)) and a later slow growth phase (mu = 0.008 h(-1)). The cell density at the transition from a fast to a slow growth rate was proportional to the initial medium nitrate concentration in the range 5-20 mM and cell yield was estimated to be 7.14 g dry cell wt/g N. Whole-cell sMNO activity remained essentially constant regardless of the growth rate unit cell growth stopped. With an initial medium iron concentration below 40 mM, an abrupt decrease in sMNO activity was observed. The lower sMNO activity could be restored by supplying additional iron to the bioreactor culture. Cell yield on iron was estimated to be 1.3 x 10(3) g dry cell wt/g Fe.  相似文献   

3.
The effect of iron ions on particulate methane monooxygenase was studied by using the EDTA-treated membranes from Methylosinus trichosporium OB3b. When the membrane was treated with EDTA the activity remained 82% of the as-isolated membranes, and the activity of the EDTA-treated membranes was strongly influenced by the addition of metal ions. Among the metal ions, ferric, ferrous and cupric ions stimulated the activity, indicating those ions were needed for the activity. When propargylamine was added, pMMO activity decreased and also the iron ESR signal decreased. As the ESR signal involves the ferrous nitrosyl complex in EDTA-treated membranes, the active site of pMMO may contain a mononuclear non-heme iron.  相似文献   

4.
The obligatory methanotroph, Methylosinus trichosporium OB3b, was studied to optimize the batch culture conditions for the formation of particulate methane monooxygenase (pMMO) in a nitrate minimal salts medium. The important medium components investigated were copper, carbon dioxide, and nitrate. The whole-cell specific pMMO activity decreased sharply with increasing copper concentrations in the range of 10-40 muM and remained constant upon further increases of the copper concentration to 120 muM. The cell growth rate (mu), on the other hand, decreased over the entire range (10-120 muM) of copper concentrations tested. When pMMO was produced in a bioreactor with an optimal initial copper concentration of 10 muM, M. trichosporium OB3b exhibited a much faster overall growth rate and a higher whole-cell propene epoxidation activity compared to our earlier study, in which soluble methane monooxygenase (sMMO) was produced with copper-deficient medium. The addition of external carbon dioxide to the bioreactor culture eliminated an initial lag period in the cell growth. When the standard culture medium nitrate concentration (10 mM) was depleted, the pMMO activity, but not the growth rate, decreased rapidly. The whole-cell specific pMMO activity could be maintained by subsequent supplementation of nitrate. A 4-fold higher initial culture medium nitrate concentration of 40 mM, however, resulted in slower cell growth and lower pMMO activity. These observations demonstrate that, in addition to affecting the exclusive production of pMMO, copper also has an important previously unrecognized role in enhancing the growth rate of M. trichosporium OB3b. They also indicate that for the optimal batch production of pMMO with the minimal medium under study, nitrate should be supplied intermittently during the course of cultivation until other culture medium components become growth-limiting.  相似文献   

5.
Continous culture experiments with the obligatory methanotroph, Methylosinus trichosporium OB3b, were conducted to study the whole-cell methane monooxygenase (MMO) and nitrogenase activities in a nitrate minimal salts medium under oxygen-limited conditions with methane as the carbone source. The important variables investigated were the feed medium concentrations of copper and nitrate, CO(2) addition, the agitation speed, and the dilution rate. M. trichosporium OB3b required quantitative amounts of copper (2.6 x 10(-4) g Cu/g dry cell Wt) for the exclusive production of particulate MMo during continous culture growth. When the feed medium nitrate concentration was varied in the range of 5-50 mM, the whole-cell specific pMMO activity exhibited a maximum at 40 mM. The elimination of external CO(2) gassing decreased pMMO activity by more than 30%. The steady-state cell density increased continuously over a 300-700 rpm range of agitation speed, whereas, the pMMO activity became maximal at 400 rpm. Also, the pMMO activity increased with the dilution rate up to 0.06 h(-1) and remained constant thereafter. Maximal continuous pMMO productivity was, thus, achieved in Higgin's medium containing 10 muM Cu, 80 muM Fe, and 40 mM nitrate with an agitation speed of 500 rpm and a dilution rate of 0.06 h(-1). Nitrogenase activity, on the other hand, increased over a feed medium copper concentration of 2-15 muM, falling sharply at 20 muM, and it exhibited a minimum at 20 mM when the feed medium nitrate concentration was varied. (c) 1992 John Wiley & Sons, Inc.  相似文献   

6.
The redox properties of the copper in particulate methane monooxygenase from Methylosinus trichosporium OB3b were investigated. The ESR spectrum of the pMMO-containing membranes from M. trichosporium OB3b indicated a typical type II copper (II) signal (g = 2.24, A = 18.4 mT, g = 2.06, 2= 0.84). By anaerobic addition of excess amounts of duroquinol, an optimum reductant of pMMO, the ESR spectra indicated that the copper cluster in membranes was reduced and successively oxidized by dioxygen, a substrate of pMMO. The result suggests that the copper is the active site of pMMO or an electron carrier. During the titration, the intensity of the type II copper signal decreased with decreasing potential and the multiple hyperfine structure at g = 2.06 appeared clearly. Although the copper signal did not change by treatment of the EDTA-treated membranes with duroquinol and dioxygen, the copper signal intensity decreased with decreasing potential in the redox titration. These results suggest that some redox mediators play a role as an electron carrier between the active site and a reductant, and the presence of at least two types of copper sites in pMMO- containing membranes. On the basis of the ESR spectra of the EDTA-treated membranes and the as-isolated membranes, it is concluded that one type of the copper sites functions as the active site of pMMO (A-site), and the other type of copper sites plays a role as an electron carrier (E-site)  相似文献   

7.
The particulate methane monooxygenase (pMMO) from Methylosinus trichosporium OB3b was partiallypurified and characterized by measuring the effects of reducing agents and additives, and the stability ofpMMO was studied. Duroquinol was a suitable reducing agent, and pMMO was stabilized by bovine serumalbumin (BSA). Among the additivies, the copper (II) ion stimulated pMMO at low concentration andinhibited at high concentration. The optimum conditions for pMMO activity were as follows: 45 ° C, pH 6.5and 55 mM 3-morpholinopropanesulfonic acid (MOPS) buffer, and the rate of propene epoxide formationwas 13.6 nmol min mg protein. ESR spectra indicate that the copper cluster in the membrane fraction isreduced by duroquinol and oxidized by dioxygen. The result suggests that the copper cluster is containedin the active site of pMMO.  相似文献   

8.
Batch culture conditions were established for the formation of H(2)-driven whole-cell soluble or particulate methane monooxygenase (sMMO or pMMO) activity in the obligate methanotroph, Methylosinus trichosporum Ob3b, to expand its potential uses in groundwater bioremediation and the production of specific chemicals. Addition of either Ni and H(2) to a nitrate-containing minimal salts growth medium or Ni and Mo to a nitrate-lacking growth medium (induces a nitrogenase that generates intracellular H(2)) markedly enhanced both the hydrogenase and the accompanying washed-cell H(2)-driven MMO activities of shake-flask cultured cells. For sMMO containing cells, H(2) provided in vitro reducing power for the oxidation of chlorinated solvents such as chloroform and trichloroethylene. Cell cultivations under N(2)-fixing conditions in a 5-L bioreactor, however, required an initial nitrate concentration of at least 1 to 2 mM to achieve high biomass yields (5 to 7 g of dry cell wt/L) for cells producing H(2)-driven sMMO or pMMO activity. Elevation of the initial medium nitrate concentration to 20 mM shortened the culture time for pMMO producing cells by 40%, yet still generated an equivalent growth yield. High nitrate also shortened the culture time for sMMO containing cells by approximately 25%, but it lowered their biomass yield by 26%. Upon storage for 5 weeks at room temperature, washed resting-state cells retained 90% and 70% of their H(2)-driven sMMO and pMMO activity, respectively. This makes their practical use quite feasible. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Whole-cell assays were used to measure the effect of dichloromethane and trichloroethylene on methane oxidation by Methylosinus trichosporium OB3b synthesizing the membrane-associated or particulate methane monooxygenase (pMMO). For M. trichosporium OB3b grown with 20 μM copper, no inhibition of methane oxidation was observed in the presence of either dichloromethane or trichloroethylene. If 20 mM formate was added to the reaction vials, however, methane oxidation rates increased and inhibition of methane oxidation was observed in the presence of dichloromethane and trichloroethylene. In the presence of formate, dichloromethane acted as a competitive inhibitor, while trichloroethylene acted as a noncompetitive inhibitor. The finding of noncompetitive inhibition by trichloroethylene was further examined by measuring the inhibition constants K iE and K iES. These constants suggest that trichloroethylene competes with methane at some sites, although it can bind to others if methane is already bound. Whole-cell oxygen uptake experiments for active and acetylene-treated cells also showed that provision of formate could stimulate both methane and trichloroethylene oxidation and that trichloroethylene did not affect formate dehydrogenase activity. The finding that different chlorinated hydrocarbons caused different inhibition patterns can be explained by either multiple substrate binding sites existing in pMMO or multiple forms of pMMO with different activities. The whole-cell analysis performed here cannot distinguish between these models, and further work should be done on obtaining active preparations of the purified pMMO. Received: 3 November 1998 / Accepted: 1 March 1999  相似文献   

10.
Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. The nature of the pMMO active site and the overall metal content are controversial, with spectroscopic and crystallographic data suggesting the presence of a mononuclear copper center, a dinuclear copper center, a trinuclear center, and a diiron center or combinations thereof. Most studies have focused on pMMO from Methylococcus capsulatus (Bath). pMMO from a second organism, Methylosinus trichosporium OB3b, has been purified and characterized by spectroscopic and crystallographic methods. Purified M. trichosporium OB3b pMMO contains approximately 2 copper ions per 100 kDa protomer. Electron paramagnetic resonance (EPR) spectroscopic parameters indicate that type 2 Cu(II) is present as two distinct species. Extended X-ray absorption fine structure (EXAFS) data are best fit with oxygen/nitrogen ligands and reveal a Cu-Cu interaction at 2.52 A. Correspondingly, X-ray crystallography of M. trichosporium OB3b pMMO shows a dinuclear copper center, similar to that observed previously in the crystal structure of M. capsulatus (Bath) pMMO. There are, however, significant differences between the pMMO structures from the two organisms. A mononuclear copper center present in M. capsulatus (Bath) pMMO is absent in M. trichosporium OB3b pMMO, whereas a metal center occupied by zinc in the M. capsulatus (Bath) pMMO structure is occupied by copper in M. trichosporium OB3b pMMO. These findings extend previous work on pMMO from M. capsulatus (Bath) and provide new insight into the functional importance of the different metal centers.  相似文献   

11.
Soluble methane monooxygenase (sMMO) maximization studies were carried out as part of a larger effort directed towards the development and optimization of an aqueous phase, multistage, membrane bioreactor system for treatment of polluted groundwater. A modified version of the naphthalene oxidation assay was utilized to determine the effects of methane:oxygen ratio, nutrient supply, and supplementary carbon sources on maximizing and maintaining sMMO activity inMethylosinus trichosporium OB3b.Methylosinus trichosporium OB3b attained peak sMMO activity (275–300 nmol of naphthol formed h–1 mg of protein–1 at 25°C) in early stationary growth phase when grown in nitrate mineral salts (NMS) medium. With the onset of methane limitation however, sMMO activity rapidly declined. It was possible to define a simplified nitrate mineral salts (NMS) medium, containing nitrate, phosphate and a source of iron and magnesium, which allowed reasonably high growth rates (max 0.08 h–1) and growth yields (0.4–0.5 g cells/g CH4) and near maximal activities of sMMO. In long term batch culture incubations sMMO activity reached a stable plateau at approximately 45–50% of the initial peak level and this was maintained over several weeks. The addition of d-biotin, pyridoxine, and vitamin B12 (cyanocobalamin) increased the activity level of sMMO in actively growing methanotrophs by 25–75%. The addition of these growth factors to the simplified NMS medium was found to increase the plateau sMMO level in long term batch cultures up to 70% of the original peak activity.Abbreviations sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - NMS nitrate mineral salts - TCE trichloroethene - NADH reduced nicotinamide adenine dinucleotide  相似文献   

12.
Lee SG  Goo JH  Kim HG  Oh JI  Kim YM  Kim SW 《Biotechnology letters》2004,26(11):947-950
Methylosinus trichosporium OB3b oxidized methane to methanol in the presence of a high concentration of Cu2+. Further oxidation of methanol to formaldehyde was prevented by adding 200 mM NaCl which acted as a methanol dehydrogenase H inhibitor. The bacterium, 0.6 mg dry cell ml(-1), in methane/air (1:4, v/v) at 25 degrees C in 12.9 mM phosphate buffer (pH 7) containing 20 mM sodium formate and 200 mM NaCl accumulated 7.7 mM methanol over 36 h.  相似文献   

13.
The purification method of particulate methane monooxygenase (pMMO) from Methylosinus trichosporium OB3b was improved, and purified pMMO retained its activity with duroquinol as a reductant. n-Dodecyl-,d-maltoside was used for the solubilization of pMMO and Brij 58 was used for the purification for anion exchange chromatography. Compared to the original pMMO activity in the membrane fraction, 88% of the activity was now retained in the purified material. The purified pMMO monomer (94 kDa) contained only two copper atoms and did not contain iron. Both copper ions showed only a typical type II copper EPR signal with a superhyperfine structure at the g region, indicating that the type II copper ions play an important role as the active site of methane hydroxylation in pMMO.  相似文献   

14.
15.
 Transformation of 1,2,3- and 1,2,4-trichlorobenzene in the presence of 20 mM sodium formate, by the methanotrophic bacterium Methylosinus trichosporium OB3b, was studied using cells grown in batch and continuous culture. Only 1,2,3-trichlorobenzene was transformed and transformation was strictly co-metabolic, only catalysed in the presence of the soluble form of methane monooxygenase. The kinetics of transformation could be described by simple first-order kinetics (0.00193 l min-1 g-1). Also the kinetics of transformation were found to be linearly proportional to cell density. No chloride ion release was observed during the reaction and the products of transformation (2,3,4- and 3,4,5-trichlorophenol) were identified by gas chromatography/mass spectroscopy and 1H-NMR and a 1.84:1 ratio of products in favour of para hydroxylation was observed. It was also observed that the relationship between mass of substrate transformed and cell density was linear giving a transformation capacity of 88.8±11.8 μmol g-1, after which the transformation of 1,2,3-trichlorobenzene was inhibited. This inhibition was not due to O2 limitation, co-substrate (CHOONa) limitation or product inhibition. Recovery and washing of the cells did not reverse this inhibition, indicating that inhibition was irreversible. During transformation a substantial decrease in the endogenous and formate-dependent O2 consumption rates was observed, although the methanol-dependent O2 consumption rate varied little between fresh cell samples and samples that had been used to transform 1,2,3-trichlorobenzene. Received: 22 June 1995 / Received last revision: 26 October 1995 / Accepted: 30 October 1995  相似文献   

16.
 Reconstituted whole-cell preparations of lyophilized Methylosinus trichosporium OB3b were used to demonstrate soluble methane monooxygenase activity in a two-phase (biphasic) matrix consisting of a buffered aqueous phase and 2,2,4-trimethylpentane (isooctane). The rate of conversion of gaseous propylene to propylene oxide, a non-metabolized liquid, was used as the primary measure of enzyme activity. Appreciable soluble methane monooxygenase activity was detected when the volume of the aqueous phase represented at least 1% of the total volume, although the initial rate of product formation did increase as the volume of the aqueous phase increased. In comparison to the aqueous system, the specific rate and yields in the biphasic system were much less sensitive to increases in the concentrations of formate and protein (the methane monooxygenase). However, there was some evidence that the enzyme system was more stable in the biphasic matrix, since the rate of propylene oxide formation remained linear for an extended period of time. V (app.) in the biphasic system decreased by a factor of 0.6 relative to the same parameter in the aqueous system. Conversely, K m(app.) for propylene was 1.6 times greater in the biphasic system. Hence, the apparent catalytic efficiency in the aqueous system was four times that in the biphasic system, as indicated by a decrease in the corresponding ratios of V (app.) to K m(app.). Received: 21 July 1995/Received last revision: 1 February 1996/Accepted: 5 December 1996  相似文献   

17.
Formate dehydrogenase (NAD+ dependent) was isolated from the obligate methanotroph Methylosinus trichosporium OB3b. When the enzyme was isolated anaerobically, two forms of the enzyme were seen on native polyacrylamide gels, DE-52 cellulose and Sephacryl S-300 columns; they were approximately 315,000 and 155,000 daltons. The enzyme showed two subunits on sodium dodecyl sulfate-polyacrylamide gels. The Mr of the alpha-subunit was 53,800 +/- 2,800, and that of the beta-subunit was 102,600 +/- 3,900. The enzyme (Mr 315,000) was composed of these subunits in an apparent alpha 2 beta 2 arrangement. Nonheme iron was present at a concentration ranging from 11 to 18 g-atoms per mol of enzyme (Mr 315,000). Similar levels of acid-labile sulfide were detected. No other metals were found in stoichiometric amounts. When the enzyme was isolated aerobically, there was no cofactor requirement for NAD reduction; however, when isolated anaerobically, activity was 80 to 90% dependent on the addition of flavin mononucleotide (FMN) to the reaction mixture. Furthermore, the addition of formate to an active, anoxic solution of formate dehydrogenase rapidly inactivated it in the absence of an electron acceptor; this activity could be reconstituted approximately 85% by 50 nM FMN. Flavin adenine dinucleotide could not replace FMN in reconstituting enzyme activity. The Kms of formate dehydrogenase for formate, NAD, and FMN were 146, 200, and 0.02 microM, respectively. "Pseudomonas oxalaticus" formate dehydrogenase, which has physical characteristics nearly identical to those of the M. trichosporium enzyme, was also shown to be inactivated under anoxic conditions by formate and reactivated by FMN. The evolutionary significance of this similarity is discussed.  相似文献   

18.
The crystal structure of the nonheme iron-containing hydroxylase component of methane monooxygenase hydroxylase (MMOH) from Methylococcus capsulatus (Bath) has been solved in two crystal forms, one of which was refined to 1.7 Å resolution. The enzyme is composed of two copies each of three subunits (α2β2γ2), and all three subunits are almost completely α-helical, with the exception of two β hairpin structures in the α subunit. The active site of each α subunit contains one dinuclear iron center, housed in a four-helix bundle. The two iron atoms are octahedrally coordinated by 2 histidine and 4 glutamic acid residues as well as by a bridging hydroxide ion, a terminal water molecule, and at 4°C, a bridging acetate ion, which is replaced at −160°C with a bridging water molecule. Comparison of the results for two crystal forms demonstrates overall conservation and relative orientation of the domain structures. The most prominent structural difference identified between the two crystal forms is in an altered side chain conformation for Leu 110 at the active site cavity. We suggest that this residue serves as one component of a hydrophobic gate controlling access of substrates to and products from the active site. The leucine gate may be responsible for the effect of the B protein component on the reactivity of the reduced hydroxylase with dioxygen. A potential reductase binding site has been assigned based on an analysis of crystal packing in the two forms and corroborated by inhibition studies with a synthetic peptide corresponding to the proposed docking position. Proteins 29:141–152, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Chlorinated propanes are important pollutants that may show persistent behaviour in the environment. The biotransformation of 1-chloropropane, 1,2-dichloropropane, 1,3-dichloropropane and 1,2,3-trichloropropane was studied using resting cell suspensions of Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. The transformation followed first-order kinetics. The rate constants were in the order 1-chloropropane > 1,3-dichloropropane > 1,2-dichloropropane > 1,2,3-trichloropropane, and varied from 0.07 to 1.03 ml min−1 mg of cells−1 for 1,2,3-trichloropropane and 1-chloropropane respectively. Turnover-dependent inactivation occurred for all of the chloropropanes tested. The inactivation constants were lower for 1-chloropropane and 1,2-dichloropropane than for 1,2,3-trichloropropane and 1,3-dichloropropane. Not all the chloride was released during cometabolic transformation of the chlorinated propanes and production of monochlorinated- and dichlorinated propanols was found by gas chromatography. The reaction pathway of 1,2,3-trichloropropane conversion was studied by mass spectrometric analysis of products formed in 2H2O, which indicated that 1,2,3-trichloropropane was initially oxidized to 2,3-dichloropropionaldehyde and 1,3-dichloroacetone, depending on whether oxygen insertion occurred on the C-3 or C-2 carbon of 1,2,3,-trichloropropane, followed by reduction to the corresponding propanols. The results show that chloropropanes are susceptible to cometabolic oxidation by methanotrophs, but that the transformation kinetics is worse than with cometabolic conversion of trichloroethylene. Received: 27 November 1997 / Received revision: 27 February 1998 / Accepted: 27 February 1998  相似文献   

20.
Kinetic, spectroscopic, and chemical evidence for the formation of specific catalytically essential complexes between the three protein components of the soluble form of methane monooxygenase from Methylosinus trichosporium OB3b is reported. The effects of the concentrations of the reductase and component B on the hydroxylation activity of the reconstituted enzyme system has been numerically simulated based on a kinetic model which assumes formation of multiple high affinity complexes with the hydroxylase component during catalysis. The formation of several of these complexes has been directly demonstrated. By using EPR spectroscopy, the binding of approximately 2 mol of component B/mol of hydroxylase (subunit structure (alpha beta gamma)2) is shown to significantly change the electronic environment of the mu-(H/R)-oxo-bridged binuclear iron cluster of the hydroxylase in both the mixed valent (Fe(II).Fe(III)) and fully reduced (Fe(II).Fe(II)) states. Protein-protein complexes between the reductase and component B as well as between the reductase and hydroxylase have been shown to form by monitoring quenching of the tryptophan fluorescence spectrum of either the component B (KD approximately 0.4 microM) or hydroxylase (two binding sites, KDa approximately 10 nM, KDb approximately 8 microM). The observed KD values are in agreement with the best fit values from the kinetic simulation. Through the use of the covalent zero length cross-linking reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), the binding sites of the component B and reductase were shown to be on the hydroxylase alpha and beta subunits, respectively. The alpha and beta subunits of the hydroxylase are cross-linked by EDC suggesting that they are juxtaposed. EDC also caused the rapid loss of the ability of the monomeric component B to stimulate the hydroxylation reaction suggesting that cross-linking of reactive groups on the protein surface had occurred. This effect was inhibited by the presence of hydroxylase and was accompanied by a loss of the ability of the component B to bind to the hydroxylase. Thus, formation of a component B-hydroxylase complex is apparently required for effective catalysis linked to NADH oxidation. When present in concentrations greater than required to saturate the initial hydroxylase complex, component B inhibited both the rate of the enzymic reaction and the cross-linking of the reductase to the hydroxylase. This suggests that a second complex involving component B can form that negatively regulates catalysis by preventing formation of the reductase-hydroxylase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号