首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has shown that the immature rat uterus contains epidermal growth factor (EGF) receptors and that tissue levels of this receptor are increased by the administration of exogenous estrogens. This study was undertaken to determine if estrogen administration also elevated EGF receptor levels in the mature animal and if the growth factor receptor levels varied in concert with endogenous estrogens throughout the estrous cycle. In the mature, castrate rat administration of estradiol, but not non-estrogenic steroids, causes a 2-3-fold elevation of uterine EGF receptors as judged by ligand binding. This increase is maximum in 18 h and is due to an increase in the number of binding sites. In cycling animals EGF receptor levels are low at metestrus, rise at diestrus, reach a maximum (approximately twice metestrus values) at proestrus, and then return at estrus to metestrus levels. These changes in EGF receptor levels parallel changes in plasma estrogens and occupied nuclear estrogen receptor reported by other workers. These results indicate that uterine EGF receptors are increased by exogenous estrogens in both mature and immature animals, and support a physiological role for estrogens in the regulation of this growth factor receptor.  相似文献   

2.
Regulation of epidermal growth factor receptor by estrogen   总被引:22,自引:0,他引:22  
  相似文献   

3.
To eludicate hormonal regulation of epidermal growth factor (EGF) concentration we studied the effects in adult female mice of ovariectomy and postovariectomy treatments with testosterone plus estradiol on the EGF concentrations in submandibular salivary gland (SMG), plasma, kidneys and urine. In the tissues, we also studied the location of EGF immunohistochemically and measured EGF mRNA. After ovariectomy, SMG EGF first decreased to one third of preovariectomy level. After postovariectomy day 10 it started to increase and reached by day 80 3.5-fold the preovariectomy level. Simultaneously, EGF mRNA increased. Testosterone treatment further strongly augmented the levels of both EGF mRNA and EGF. A small dose of estradiol counteracted slightly the mRNA effect of testosterone. After ovariectomy plasma EGF first increased 1.3-fold by day 10, then returned to the initial levels, and rose again 1.6-fold by day 80. Testosterone treatment induced a further 1.5-fold increase. Estradiol did not counteract this effect. Kidney EGF decreased 15% by postovariectomy day 20. This was preceded by a decrease in EGF mRNA from day 10 onwards. The EGF concentration recovered during the 80 days, but the EGF mRNA level stayed low. Testosterone treatment further reduced the levels of both EGF mRNA and EGF. This effect was counteracted by estradiol. Urine EGF increased after ovariectomy to a peak (1.7-fold) by day 40. It then returned to the preovariectomy levels by day 80. Testosterone treatment increased urinary EGF 1.9-fold; concomitant estradiol had no effect.  相似文献   

4.
Uterine luminal fluids (ULF) from early (Days 10 and 12)-pregnant sows contain factors that stimulate DNA synthesis in a variety of cell lines. The major growth factor component in these fluids has been partially purified 200-fold by heat treatment, anion-exchange chromatography, and gel filtration using mouse embryo-derived AKR-2B fibroblasts as an indicator cell line. The ULF mitogen (ULFM) is a polypeptide with an apparent molecular weight of 4800; it is extremely heat stable and resistant to treatment with urea. This mitogen is also present in ULF from cycling sows but is not detectable in uterine cytosolic extracts or in serum isolated from pigs at Day 12 of pregnancy. The addition of this factor to medium containing 0.5% calf serum results in a 50% increase in final cell density of AKR-2B cells. ULFM appears biologically distinct from mouse and human epidermal growth factor (EGF), since its activity is not inhibited by antibody to mouse EGF and it does not compete for binding to human (A431) EGF receptors. In addition, the ULF factor stimulates DNA synthesis in human A431 epidermoid carcinoma cells, whereas EGF is inhibitory. Partially purified ULFM also stimulates DNA synthesis in primary cultures of pig uterine stromal cells. This mitogen activity is dose-dependent and is not inhibited by antibody to mouse EGF. Thus ULFM may act in concert with other peptide growth factors in regulating uterine growth and/or differentiation.  相似文献   

5.
This study examined the distribution of immunoreactive epidermal growth factor (EGF) and EGF receptor (EGF-R) in the uterus and the effects of EGF on uterine activity in goats. Immunohistochemistry of EGF and EGF-R in the uteri showed distinct staining in the luminal and glandular epithelium and slight to moderate staining in the stromal and myometrial cells. To examine possible roles of the EGF system in the regulation of uterine activity, pressure changes in the intrauterine balloon were determined after intraluminal infusion of EGF into the uterine horn. Either at estrus or diestrus (9 to 14 days after the first day of estrus), treatment with 1 or 5 microg of EGF gradually reduced uterine activity, whereas infusion of the vehicle alone had no effect. The maximum reduction in uterine activity was seen 4 h after the treatment with 1 microg of EGF (40% to 45% reduction in the area surrounded by the contraction curve and its baseline), and the activity slowly returned thereafter. These results suggest that EGF in the uterus may play a role in regulating uterine activity in goats.  相似文献   

6.
In the mouse, estriol (E3) can induce implantation as a phase I of estrogen action. E3-induced implantation was attenuated by indomethacin(INDO), an inhibitor of prostaglandin (PG) synthesis. The inhibitory effect of INDO was reversed by administration of epidermal growth factor (EGF), and this EGF effect was dose-dependent. These results suggest that one of the functions of estrogen could be to activate the EGF ligand-receptor signalling in the uterus in generating PGs required for initiation of implantation. This is consistent with the results of EGF stimulation of synthesis of PGs in uterine stromal cells in culture.  相似文献   

7.
Although transforming growth factor-alpha (TGF-alpha), one of the epidermal growth factor (EGF) family of growth factors, is expressed in the rat decidual cells, its roles in decidualization remain to be elucidated. This study examined the effect of TGF-alpha on the progression of decidualization and a possibility for involvement of prostaglandins (PGs) in its action. Pseudopregnant rats were ovariectomized and given endometrial trauma on Day 5 (vaginal plug = Day 1) and were daily treated with 2 mg progesterone thereafter. Immunocytochemical localization of EGF receptor was distinctly evident in the decidual, stromal and epithelial cells on Day 7. Continuous infusion of TGF-alpha (500 pg/h) into the uterine lumen from Day 7 significantly increased weights of the uterine horns with deciduomata on Day 9. Although injection on Day 7 of indomethacin, an inhibitor of PGs synthesis, decreased the uterine weight, this effect was overridden by the continuous infusion of this growth factor. These results demonstrated the stimulatory action of TGF-alpha on the progression of decidualization. Further, TGF-alpha increased the secretion of prostaglandin E in cultured decidual and/or stromal cells dose-dependently, suggesting the possibility that PGs mediate the action of this growth factor.  相似文献   

8.
The purpose of the present study was to evaluate the in vivo effect of the GnRH analogue leuprolide acetate (LA) on follicular development and apoptosis-related mechanisms in preovulatory ovarian follicles (POF) obtained from prepubertal eCG-treated rats. Serum progesterone and estradiol levels were measured, and a significant decrease in circulating estradiol levels was observed in the LA group, whereas serum progesterone levels remained unchanged. Ovarian histology revealed an inhibitory effect of LA treatment on the follicular development induced by eCG. After 48 h of LA treatment, the numbers of atretic and preantral follicles were increased as compared with controls, whereas the number of antral follicles had decreased. Cells undergoing DNA fragmentation were quantified by performing in situ 3' end labeling of DNA with digoxygenin-dUTP on ovarian sections. LA treatment caused an increase in the percentage of apoptotic cells in preantral and antral follicles. DNA isolated from these POF incubated 24 h in serum-free medium exhibited the typical apoptotic DNA degradation pattern. Treatment of follicles with epidermal growth factor (EGF) suppressed the spontaneous onset of DNA fragmentation, and a similar effect was observed in LA follicles. POF obtained from LA-treated rats showed no changes in Bcl-2 or Bax protein levels. However, a reduction in the Bcl-xL:Bcl-xS ratio was observed, with a greater decrease in Bcl-xL compared with Bcl-xS during the incubation, suggesting a lower stability of the Bcl-xL isoform in the LA group. These results indicate that in vivo GnRH agonist treatment produces an increase in the apoptosis process in POF from eCG-treated rats, and this effect is reversed in vitro by EGF. This GnRH analogue also reduced the stability of the Bcl-xL protein, thus interfering with follicular development by an as yet unknown mechanism.  相似文献   

9.
A 24 hr incubation of T-47D human breast cancer cells with R5020, a synthetic progestin, resulted in a 200-250% increase in the specific binding of human growth hormone (hGH) and epidermal growth factor (EGF) by these cells. This effect was specific for progestins in that similar responses were observed with progesterone, medroxyprogesterone acetate and ORG 2058 but no significant increases in hGH or EGF binding were observed in cells incubated with testosterone, estradiol or hydrocortisone. Increased binding was due to an increase in the concentration of receptors (hGH, control = 6,490 +/- 500, progestin treated = 13,180 +/- 3,270 sites/cell; EGF, control = 33,380 +/- 7,410, progestin treated = 67,460 +/- 20,330 sites/cell) while the affinity constants for the hormone-receptor interactions were unchanged by progestin treatment. The specific binding of insulin, calcitonin, transferrin and concanavalin A was unaffected by these treatments. It is concluded that expression of hGH and EGF receptors in this breast cancer cell line is regulated by progestins.  相似文献   

10.
Epidermal growth factor (EGF) is one of growth factors that are thought to mediate the stimulatory effects of estrogen on the proliferation of uterine epithelial cells. The present study was attempted to obtain direct evidence for the mitogenic effects of EGF on uterine epithelial cells, and to prove that EGF and EGF receptors are expressed in these cells. Mouse uterine epithelial cells were isolated from immature female mice and cultured with or without EGF for 5 days. EGF (1 to 100 ng/ml) significantly increased the number of uterine epithelial cells, and the maximal growth (141.9+/- 8.3% of controls) was obtained at a dose of 10 ng/ml. In addition, EGF (0.1 to 100 ng/ml) increased the number of DNA-synthesizing cells immunocytochemically detected by bromodeoxyuridine uptake to the nucleus. Northern blot analysis revealed that the uterine epithelial cells expressed both EGF mRNA (4.7 kb) and EGF receptor mRNAs (10.5, 6.6, and 2.7 kb) These results suggest that the proliferation of uterine epithelial cells is regulated by the paracrine and/or autocrine action of EGF. Our previous study demonstrated the mitogenic effect of IGF-I on uterine epithelial cells. To examine whether the EGF- and IGF-I signaling act at the same level in the regulation of the proliferation of uterine epithelial cells, the cultured cells were simultaneously treated with IGF-I and EGF. IGF-I was found to additively stimulate the mitogenic effects of EGF, suggesting that the EGF-induced growth of uterine epithelial cells is distinct from IGF-I-induced growth.  相似文献   

11.
Epidemiological reports and laboratory data have associated soy and genistein with reduced incidence of uterine, breast, and prostate cancers, cardiovascular disease and osteoporosis, and lower total blood cholesterol. The aim of this study was to investigate the effect of genistein in the uterus and vagina of rats, focusing our attention on the distribution of transforming growth factor (TGF) alpha, epidermal growth factor (EGF), and EGF receptor. A pharmacological dose of genistein (500 microg/g body weight) injected in rats on days 16,18, and 20 postpartum resulted in significant uterine wet weight gain, with hypertrophy of the luminal and glandular epithelium of the uteri, and squamous epithelium of the vagina in 21-day-old animals. At 50 days of age, hypertrophy was no longer evident in the uterus and vagina. Prepubertal genistein treatment resulted in significantly increased EGF immunostaining in individual stromal cells and reduced EGF receptor immunostaining in blood vessels of the uterus. Genistein-treated rats had decreased TGF-alpha immunostaining in glandular and luminal epithelium and a slight increase in EGF receptor immunostaining in stromal cells of the uterus. This suggests paracrine interaction between cells elevating the level of EGF ligand in the stroma and the EGF receptor in the luminal and glandular epithelium, resulting in uterine hypertrophy. In the vagina, genistein did not cause significant alterations to the EGF-signaling pathway in 21- and 50-day-old rats. We conclude that pharmacological doses of genistein during the prepubertal period can modulate the EGF-signaling pathway in the uterus and exert a uterotrophic response in a short-term manner.  相似文献   

12.
Exogenous estradiol treatment of intact or ovariectomized rats causes accumulation of significant volumes of fluid in the uterine horns. In this report, evidence is presented showing the presence of mammalian cell growth factor(s) in uterine luminal fluid (ULF), along with other data showing that the exogenous estradiol treatment needed to cause significant accumulation of the fluid also facilitates the movement of vaginal origin bacteria into the uterine horns. It is shown that microorganisms infect the uteri of 80% or more of rats administered exogenous estradiol, and that the microorganisms are most probably of vaginal origin; procedures such as ligation of the uterine body above the cervix or antibiotic treatment did not suppress the infections. Administration of different doses of exogenous estrogen by either implantation of a single 25-mg estradiol/cholesterol pellet which causes a 20- to 50-fold elevation of estradiol levels above physiological plasma concentrations, or instead, by a Silastic tube delivery method that elevates levels only 2- to 3-fold above the normal range, resulted in equal frequency of uterine infections and in the appearance of infection at the same time after starting treatment. A number of bacterial species are present in the contaminated ULF, and these are the origins of intracellular products which are potent inhibitors of mammalian cell growth; the presence of these bacterial origin inhibitors interferes with the bioassay of the ULF growth factor activity, and hence, impedes the characterization of the growth factor(s) present in luminal fluid. Characterization of the origins of the growth-inhibiting activities showed that Pseudomonas aeruginosa and Proteus mirabilis are the predominant species present in infected uteri and that both produce exotoxin activities which inhibit growth of mammalian cells in culture; Pseudomonas appears to be the greater producer of cytotoxic activity. Evidence is presented that suggests that the well-known Exotoxin A produced by Pseudomonas may be responsible, in part, for the toxic effects of this organism. Other, as yet unidentified, cell growth inhibitors also may be produced by the bacteria found in ULF. Surgical separation of the uterine body from the cervix allows preparation of ULF which contains no bacteria and substantially reduced levels of growth inhibitors to mammalian cell lines.  相似文献   

13.
The antagonistic effects of progesterone and of the anti-estrogens, tamoxifen and nafoxidine, to estrogen responses were studied in the target tissues of fetal and newborn guinea pigs. In the fetal uterus, progesterone inhibits the stimulatory effect provoked by estradiol on uterine growth, on progesterone receptor and on the acetylation of nuclear histones. Progesterone also blocks the synthesis of new progesterone receptor protein in organ culture. Tamoxifen or nafoxidine (1 or 10mg/kg/day injected to the mother for 3 days) provoke a uterotrophic effect similar to that of estradiol (1 mg/kg/day injected to the mother for 3 days) but these anti-estrogens have a limited effect on the progesterone receptor. Tamoxifen given together with estradiol antagonizes the effect of the estrogen on the acetylation of histones but the anti-estrogens do not block the effect of estradiol on uterine growth. Histological studies show that both estradiol and tamoxifen provoke a dramatic hypertrophie and hyperplastic effect particularly in the uterine epithelium.In the newborn uterus (6-day old), tamoxifen (s.c. injection of 0.6μg/g body weight) and estradiol (injection of 30 ng/g body weight) provoke a similar uterotrophic effect and both have a limited effect on the progesterone receptor.In the fetal thymus estradiol provokes a selective decrease in the larger and actively proliferating lymphoid cells of the cortical zone. Tamoxifen has a similar effect but to a much lesser extent than estradiol. On the other hand, tamoxifen antagonizes the effect of estradiol on this fetal tissue.It is concluded that during fetal life progesterone antagonizes the effect of estradiol but tamoxifen can act as an agonist or an antagonist of estrogen action which is a function of the type of response or organ considered.  相似文献   

14.
Effects of progesterone on growth factor expression in human uterine leiomyoma   总被引:16,自引:0,他引:16  
Maruo T  Matsuo H  Shimomura Y  Kurachi O  Gao Z  Nakago S  Yamada T  Chen W  Wang J 《Steroids》2003,68(10-13):817-824
It is now evident that the use of levonorgestrel-releasing intrauterine system (LNg-IUS) is effective for long-term management of menorrhagic women with uterine myomas because of a striking reduction in menorrhagia. This prompted us to characterize the effects of progesterone (P4) on the growth and apoptosis of uterine leiomyoma cells. On the other hand, we have recently noted that epidermal growth factor (EGF) and IGF-I play a crucial role in prompting uterine leiomyoma growth through stimulating the proliferative potential and inhibiting apoptosis of cultured human leiomyoma cells. In the present review, attention was paid to evaluate the effects of P4 on the expression of growth factors (EGF, IGF-I) and apoptosis-related factors (TNFalpha, Bcl-2 protein) in cultured uterine leiomyoma cells. Treatment with P4 augmented EGF and Bcl-2 protein expression, but inhibited IGF-I and TNFalpha expression in cultured leiomyoma cells. It is known that TNFalpha induces apoptosis in a variety of cell types and Bcl-2 protein is an apoptosis-inhibiting gene product. Thus, the results obtained suggest that P4 has dual actions on uterine leiomyoma growth: one is to stimulate leiomyoma cell growth and survival through up-regulating EGF and Bcl-2 protein expression as well as down-regulating TNFalpha expression in those cells, and the other is to inhibit leiomyoma cell growth through down-regulating IGF-I expression in those cells. This may explain why the size of uterine myomas during use of LNg-IUS increases in some but decreases in other instances. This may also explain why the size of uterine myomas during pregnancy does not increase despite the overwhelming increase in circulating concentrations of sex steroid hormones.  相似文献   

15.
Growth factors produced in the uterine endometrium are considered to be involved in the proliferation of the mouse uterine stromal cells induced by estradiol-17beta (E(2)) and progesterone (P). The effect of epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha), one of EGF-related growth factors, on the proliferation of mouse uterine stromal cells was studied in a serum-free culture. The growth of the uterine stromal cells was measured by MTT assay. EGF was found to increase the number of uterine stromal cells in a dose-dependent manner. The DNA-replicating cells were investigated using the immunocytochemical detection of bromodeoxyuridine (BrdU)-labeled cells. EGF and TGF-alpha increased the percentage of BrdU-labeled cells in a dose-dependent manner. Administration of the combination of E(2) (10(-9) M) and P (10(-7) M) for 2 days increased the percentage of BrdU-labeled cells 2.3-fold. The stimulatory effect of EGF, TGF-alpha and the combination of E(2) and P on DNA replication in the uterine stromal cells was repressed by RG-13022 (10(-5) M, the inhibitor of the EGF receptor tyrosine kinase). RT-PCR analysis of EGF-receptor-, TGF-alpha-, and EGF-mRNA was carried out in the cultured uterine stromal cells, and revealed the expression of those mRNAs. These data supported the hypothesis that uterine endometrial stromal growth induced by sex steroids required the EGF family of ligands such as EGF and TGF-alpha, both produced in the stromal cells, acting for DNA synthesis through EGF receptors.  相似文献   

16.
Progestins diminish the estrogen-induced angiogenic potential related to basic fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) in uterine endometrial cancer cells. This led us to study the effect of various steroids on the expression of platelet-derived endothelial cell growth factor (PD-ECGF) as the other pertinent angiogenic factor in well-differentiated uterine endometrial cancer cell line Ishikawa.In Ishikawa cells, estradiol induced the expression of PD-ECGF and its mRNA. The estrogen-induced expression was increased approximately two-fold by progesterone and by its metabolite, 17alpha-hydroxyprogesterone, but not by medroxyprogesterone acetate (MPA). Therefore, progesterone and 17alpha-hydroxyprogesterone as endogenous steroids might induce PD-ECGF-related angiogenic potential in uterine endometrial cancer cells, but not MPA as a synthetic steroid. In conclusion, the failure of PD-ECGF induction by MPA might be the great merit of anti-angiogenic treatment with MPA for uterine endometrial cancers.  相似文献   

17.
18.
19.
Differentiation of the metanephrogenic mesenchyme is triggered by an inductive tissue interaction between an inducer tissue and the mesenchyme. It is generally believed that the epithelial ureter bud acts as an inducer during in vivo development. In response to the inductive stimulus most of the mesenchymal cells convert into epithelial cells, while a small fraction differentiates into stromal cells. In vitro, differentiation of isolated mesenchyme to epithelium can be induced by a variety of embryonic tissues, but nothing is known about the molecular nature of the inducing stimulus. In recent years, large numbers of polypeptide growth factors have been described, which in addition to proliferative effects were shown to exert effects on a variety of biological phenomena such as chemotaxis, inflammation, tissue repair, or induction of embryonic development. We therefore analyzed whether growth factors in the absence of inducer tissue can induce isolated kidney mesenchyme to differentiate into epithelium or interstitium. As expected, both growth and differentiation into epithelium were stimulated by an inducer tissue, the spinal cord. We found that none of the various growth factors tested (including epidermal growth factor, transforming growth factors alpha and beta, insulin-like growth factors I and II, fibroblast growth factor, platelet-derived growth factor, and retinoic acid) could mimick the effect of an inducer tissue, although we tested the factors over a wide concentration range. One of the tested factors, epidermal growth factor (EGF) stimulated the mesenchymal cells to become stromal cells, although it could not stimulate development into epithelium. EGF could stimulate stromal development both when the mesenchyme was cultured in isolation and when the mesenchyme was stimulated by an inducer tissue to become epithelium. The expansion of the stromal compartment in response to EGF treatment occurred at the expense of the epithelial cells, but EGF could not completely suppress the formation of epithelium. These data suggest the presence of EGF receptors in the developing kidney, but since application of soluble EGF leads to abnormal development, soluble EGF cannot be the natural ligand. We suggest that locally produced mitogens with an EGF-like structure may regulate the relative amounts of stroma (interstitium) and epithelium in the developing kidney.  相似文献   

20.
EffectofEpidermalGrowthFactoronFollicularDevelopmentandSteroidogenesisinPerfusedRatOvary¥LUOWen-xiang(罗文祥);ZHAOFang(赵芳);MAKui...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号