共查询到11条相似文献,搜索用时 0 毫秒
1.
H. A. Kordan 《Plant and Soil》1988,107(1):145-148
Tomato seeds exhibited high germination percentages on the chloride salts of the alkali metal cations Li, Na, K, Rb, and Cs.
Root extension was normal in seedlings germinated in light or dark on Li, Na, or K but was severely suppressed on Rb and Cs
in both environments. Germination percentages and root extension on alkali sulphate salts were similar to those observed on
alkali chloride salts. Suppression of root extension by Rb and Cs was not cultivar specific. 相似文献
2.
The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range 总被引:25,自引:0,他引:25
Korshunova Yulia O. Eide David Gregg Clark W. Lou Guerinot Mary Pakrasi Himadri B. 《Plant molecular biology》1999,40(1):37-44
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants. 相似文献
3.
Arrivault S Senger T Krämer U 《The Plant journal : for cell and molecular biology》2006,46(5):861-879
Zinc ions are required to maintain the biological activity of numerous proteins. However, when mislocalized or accumulated in excess, Zn(2+) ions are toxic because of adventitious binding to proteins and displacement of other metal ions, among them Fe(2+), from their binding sites. Heterologous expression of a previously uncharacterized Arabidopsis thaliana metal tolerance protein, MTP3, in the zrc1 cot1 mutant of budding yeast restores tolerance to, and cellular accumulation of, zinc and cobalt. An MTP3-GFP fusion protein localizes to the vacuolar membrane when expressed in Arabidopsis. Ectopic over-expression of MTP3 increases Zn accumulation in both roots and rosette leaves of A. thaliana, and enhances Zn tolerance. Exposure of wild-type plants to high but non-toxic concentrations of Zn or Co, or Fe deficiency, strongly induce MTP3 expression specifically in epidermal and cortex cells of the root hair zone. Silencing of MTP3 by RNA interference causes Zn hypersensitivity and enhances Zn accumulation in above-ground organs of soil-grown plants and of seedlings exposed to excess Zn or to Fe deficiency. Our data indicate that, in wild-type A. thaliana, the AtMTP3 protein contributes to basic cellular Zn tolerance and controls Zn partitioning, particularly under conditions of high rates of Zn influx into the root symplasm. 相似文献
4.
The influence of nicotianamine (NA) on formation and elongation of adventitious roots in hypocotyls of de-rooted NA-less mutant seedlings of Lycopersicon esculentum Mill, was examined in relation to the iron supply [ferric N-N'-ethylenediaminedi-(2-hydroxyphenylacetate) (FEDDHA), ferric ethylenediaminetetracetate (FeEDTA), ferric N-(2-hydroxyethyl)-ethylenediaminetriacetate (FeHEDTA, Fe-citrate and FeCl3 ] in the nutrient solution. The initiation of root primordia in hypocotyl cuttings was independent of NA and occurred with about the same frequency in both, mutant and wild-type. In the mutant the development of primordia to adventitious roots was blocked at all iron sources used, except FeEDTA. Addition of NA (5x 10−6 to 2 × 10−5 M ) to the rooting medium resulted in a fast growth of adventitious roots in mutant cuttings with all iron sources tested. Rooting of wild-type cuttings was independent from NA application and iron sources. We suppose that NA is involved in the intracellular transport of iron. Its function is possibly linked with chelation of ferrous iron in the cell. 相似文献
5.
6.
Alexander P.R. Theuvenet Willem M.H. Van De Wijngaard Josephus W. Van De Rijke George W.F.H. Borst-Pauwels 《生物化学与生物物理学报:生物膜》1984,775(2):161-168
The applicability of 9-aminoacridine as a probe of the surface potential of yeast cells is examined. Yeast cells are found to quench the fluorescence of the dye and it is shown that this quenching is caused by a decrease in the dye concentration in the bulk aqueous phase. Consistent with predictions of the Gouy-Chapman theory the dye is displaced from the surface of the yeast cells by addition of salts, the effectiveness of the salts being related to the valency of the cation: . It is shown that 9-aminoacridine is predominantly bound by the plasma membrane of the cells. Only a minor part of the binding occurs in the cell wall, in line with the finding that enzymic removal does not significantly affect the binding of the dye to the cells. A single relationship for the distribution ratio of the dye between cells and medium with the ζ potential of the cells is found, irrespective of the way the ζ potential is changed, either by varying the pH or the Ca2+ concentration. It is argued that the electrostatic potentials probed by the dye are much higher than the corresponding ζ potentials and are of the same order of magnitude of the presumed discrete charge potentials experienced by cation transporters in the plasma membrane. It is concluded that 9-aminoacridine may be applied as a convenient and almost quantitative probe of the surface potential that effects the kinetics of ion uptake by the yeast cells. 相似文献
7.
Managing the manganese: molecular mechanisms of manganese transport and homeostasis 总被引:10,自引:0,他引:10
Pittman JK 《The New phytologist》2005,167(3):733-742
Manganese (Mn) is an essential metal nutrient for plants. Recently, some of the genes responsible for transition metal transport in plants have been identified; however, only relatively recently have Mn2+ transport pathways begun to be identified at the molecular level. These include transporters responsible for Mn accumulation into the cell and release from various organelles, and for active sequestration into endomembrane compartments, particularly the vacuole and the endoplasmic reticulum. Several transporter gene families have been implicated in Mn2+ transport, including cation/H+ antiporters, natural resistance-associated macrophage protein (Nramp) transporters, zinc-regulated transporter/iron-regulated transporter (ZRT/IRT1)-related protein (ZIP) transporters, the cation diffusion facilitator (CDF) transporter family, and P-type ATPases. The identification of mutants with altered Mn phenotypes can allow the identification of novel components in Mn homeostasis. In addition, the characterization of Mn hyperaccumulator plants can increase our understanding of how plants can adapt to excess Mn, and ultimately allow the identification of genes that confer this stress tolerance. The identification of genes responsible for Mn2+ transport has substantially improved our understanding of plant Mn homeostasis. 相似文献
8.
Fast protein liquid chromatography (FPLC) with DEAE-Sepharose Fast Flow, PBE-94 and Q-Sepharose Fast Flow columns are applied to the purification of the ferric enterobactin protein receptor (FepA). The apparent single band of FepA on SDS-PAGE is isolated and purified into two proteins with very similar molecular weights. The two proteins are identified to be FepA and ferric citrate protein receptor (FecA) by N-terminus amino acid determination and a computer search with the Gene Bank file. The assay of binding activities of these proteins shows that both FepA and FecA bind ferric enterobactin, with the former having about double the activity of the latter. Competition studies shows that Fe-MECAM is competitively bound to both proteins and that ferric parabactin only slightly competes with [55Fe]ferric enterobactin. It is found that ferrichrome A has no effect on the binding of the receptor proteins with ferric enterobactin. 相似文献
9.
Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar×Swarna RILs 总被引:1,自引:0,他引:1
Identifying QTLs/genes for iron and zinc in rice grains can help in biofortification programs. 168 F(7) RILs derived from Madhukar×Swarna were used to map QTLs for iron and zinc concentrations in unpolished rice grains. Iron ranged from 0.2 to 224ppm and zinc ranged from 0.4 to 104ppm. Genome wide mapping using 101 SSRs and 9 gene specific markers showed 5 QTLs on chromosomes 1, 3, 5, 7 and 12 significantly linked to iron, zinc or both. In all, 14 QTLs were identified for these two traits. QTLs for iron were co-located with QTLs for zinc on chromosomes 7 and 12. In all, ten candidate genes known for iron and zinc homeostasis underlie 12 of the 14 QTLs. Another 6 candidate genes were close to QTLs on chromosomes 3, 5 and 7. Thus the high priority candidate genes for high Fe and Zn in seeds are OsYSL1 and OsMTP1 for iron, OsARD2, OsIRT1, OsNAS1, OsNAS2 for zinc and OsNAS3, OsNRAMP1, Heavy metal ion transport and APRT for both iron and zinc together based on our genetic mapping studies as these genes strictly underlie QTLs. Several elite lines with high Fe, high Zn and both were identified. 相似文献
10.
Liliana Quintanar Author Vitae 《Inorganica chimica acta》2008,361(4):875-884
Manganese is an essential metal for life, yet chronic exposure to this metal can cause a neurodegenerative disease named manganism, with symptoms that resemble Parkinson’s disease. Mn accumulates in the striatum and damages this brain structure that controls motor function; however, the molecular mechanisms underlying this neurodegenerative disease are poorly understood. In this short review, a summary of the current knowledge on the mechanisms involved in Mn neurotoxicity is given, with a special emphasis on the features that suggest specific protein-manganese interactions. The mechanisms of Mn uptake into the brain are discussed, displaying its similarities to Fe metabolism. Cellular trafficking of Mn is also reviewed, pointing out at its connection to Ca homeostasis, and its relevance for understanding Mn-induced neuronal death. The main purpose of this review is to provide a glimpse of an unexplored bioinorganic facet of a Mn-induced neurodegenerative disease. 相似文献
11.