首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the potential role of the cysteine proteinases, cathepsin B and L, in renal tubular protein degradation and increased permeability of the glomerular basement membrane (GBM) which occurs in a neutrophil- and complement-independent model of anti-GBM antibody disease. The specific activity of cathepsin L, but not cathepsin B, was significantly increased (157%, p greater than 0.01) in cortical homogenates (85-90% tubules) prepared from anti-GBM-treated rats compared to saline-treated controls. Using highly purified cathepsin B and L, we documented the ability of these proteinases to degrade albumin in vitro (Km 5.92 and 0.22 microM for B and L, respectively). In two separate studies, treatment of rats with trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane, (E-64), a specific and irreversible inhibitor of cysteine proteinases, significantly reduced proteinuria (-45 and -41%, p less than 0.01) in the 24-hour period following injection of the anti-GBM IgG. Taken together, these data suggest an important role for cysteine proteinases in the increased tubular protein degradation which occurs in response to increased filtered protein loads and in the increased GBM permeability (proteinuria) characteristic of glomerular disease.  相似文献   

2.
We have utilized specific, irreversible inhibitors of cysteine proteinases to examine the role of renal cathepsin B and cathepsin L in the proteinuria which occurs in an experimental model of human glomerular disease. Administration of trans-epoxysuccinyl-L-leucylamido-(3-methyl)butane (Ep475) a specific, irreversible inhibitor of cysteine proteinases, including cathepsins B and L, significantly reduced proteinuria in rats with experimentally induced, neutrophil-independent, anti-GBM antibody disease (controls: 10 +/- 1 mg/24 h, N = 8; anti-GBM antibody disease: 203 +/- 30 mg/24 h, N = 8; anti-GBM antibody disease + Ep475: 112 +/- 13 mg/24 h, mean +/- SEM, N = 6, P less than 0.05). There was a marked reduction in the activity of both cathepsin B and cathepsin L in renal cortices obtained from Ep475-treated rats compared to either saline-treated controls or rats treated with anti-GBM IgG only. Administration of Z-Phe-Tyr(O-t-butyl)CHN2, a specific, irreversible cysteine proteinase inhibitor with a high degree of selectivity toward cathepsin L, also caused a reduction in anti-GBM antibody-induced proteinuria (90 +/- 18 mg/24 h, N = 6, P less than 0.05). This reduction in proteinuria was accompanied by a marked decrease (-84%) in the specific activity of renal cortical cathepsin L in Z-Phe-Tyr(O-t-butyl)CHN2-treated rats. However, cathepsin B activity was unchanged. There was no significant change in the renal anti-GBM antibody uptake, plasma urea nitrogen, or plasma creatinine values in the Z-Phe-Tyr(O-t-butyl)CHN2-treated rats compared to rats treated with anti-GBM IgG only or saline-treated controls. These data document the ability of cysteine proteinase inhibitors to decrease the proteinuria which occurs in a neutrophil-independent model of human anti-GBM antibody disease and suggest an important role for cathepsin L in the pathophysiology of the proteinuria which occurs in this model.  相似文献   

3.
1. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) at a concentration of 0.5 mM had no effect on the serine proteinases plasma kallikrein and leucocyte elastase or the metalloproteinases thermolysin and clostridial collagenase. In contrast, 10 muM-E-64 rapidly inactivated the cysteine proteinases cathepsins B, H and L and papain (t0.5 = 0.1-17.3s). The streptococcal cysteine proteinase reacted much more slowly, and there was no irreversible inactivation of clostripain. The cysteine-dependent exopeptidase dipeptidyl peptidase I was very slowly inactivated by E-64. 2. the active-site-directed nature of the interaction of cathepsin B and papain with E-64 was established by protection of the enzyme in the presence of the reversible competitive inhibitor leupeptin and by the stereospecificity for inhibition by the L as opposed to the D compound. 3. It was shown that the rapid stoichiometric reaction of the cysteine proteinases related to papain can be used to determine the operational molarity of solutions of the enzymes and thus to calibrate rate assays. 4. The apparent second-order rate constants for the inactivation of human cathepsins B and H and rat cathepsin L by a series of structural analogues of E-64 are reported, and compared with those for some other active-site-directed inhibitors of cysteine proteinases. 5. L-trans-Epoxysuccinyl-leucylamido(3-methyl)butane (Ep-475) was found to inhibit cathepsins B and L more rapidly than E-64. 6. Fumaryl-leucylamido(3-methyl)butane (Dc-11) was 100-fold less reactive than the corresponding epoxide, but was nevertheless about as effective as iodoacetate.  相似文献   

4.
It has been suggested that the lysosomal proteinases cathepsin B, L and D participate in tumour invasion and metastasis. Whereas for cathepsins B and L the role of active enzyme in invasion processes has been confirmed, cathepsin D was suggested to support tumour progression via its pro-peptide, rather than by its proteolytic activity. In this study we have compared the presence of active cathepsins B, L and D in ras-transformed human breast epithelial cells (MCF-10A neoT) with their ability to invade matrigel. In this cell line high expression of all three cathepsins was detected by immunofluorescence microscopy. The effect of proteolytic activity on cell invasion was studied by adding various natural and synthetic cysteine and aspartic proteinase inhibitors. The most effective compound was chicken cystatin, a general natural inhibitor of cysteine proteinases, (82.8+/-1.6% inhibition of cell invasion), followed by the synthetic inhibitor trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64). CLIK-148, a specific inhibitor of cathepsin L, showed a lower effect than chicken cystatin and E-64. Pepstatin A weakly inhibited invasion, whereas the same molar concentrations of squash aspartic proteinase (SQAPI)-like inhibitor, isolated from squash Cucurbita pepo, showed significant inhibition (65.7+/-1.8%). We conclude that both cysteine and aspartic proteinase activities are needed for invasion by MCF-10A neoT cells in vitro.  相似文献   

5.
K Hara  E Kominami  N Katunuma 《FEBS letters》1988,231(1):229-231
The effects of various proteinase inhibitors on the processing of lysosomal cathepsins B, H and L were investigated in cultured rat peritoneal macrophages. The processing of newly synthesized pro-cathepsins B, H and L to the mature single-chain enzymes was sensitive to a metal chelator,1,10-phenanthroline, and a synthetic metalloendopeptidase substrate, Z-Gly-Leu-NH2, and insensitive to inhibitors of serine proteinases, aspartic proteinases and cysteine proteinases. Inhibitors of cysteine proteinases, E-64-d and leupeptin, inhibited the processing of the single-chain forms of cathepsins B, H and L to the two-chain forms. These results suggest that (a) metal endopeptidase(s) is (are) involved in the propeptide processing of cathepsin B, H and L, and that proteolytic cleavages of the mature single-chain cathepsins are accomplished by cysteine proteinases in lysosomes.  相似文献   

6.
Incubation of glomerular homogenates (200 micrograms protein) with glomerular basement membrane (GBM, 30-35 micrograms hydroxyproline) at pH 7.5 for 36 h at 37 degrees C resulted in significant GBM degradation as measured by hydroxyproline release (40 +/- 6%, n = 17). GBM degradation increased with increasing incubation time (12-48 h) and glomerular protein concentration (50-250 micrograms). GBM degradation was not significantly decreased by inhibitors of serine or cysteine proteinases or the inhibitor of bacterial metalloproteinases, phosphoramidon. In contrast GBM degradation by glomerular homogenates was markedly inhibited by the metal chelators 10mM EDTA (-95 +/- 3%, n = 7) and 2mM 1,10-phenanthroline (-96 +/- 2%, n = 4). Preincubation of glomerular homogenates with trypsin (followed by soya bean trypsin inhibitor) markedly stimulated GBM degradation (+103 +/- 20%, n = 11). These results document the presence of a GBM-degrading, neutral metalloproteinase(s) in glomeruli suggesting an important role for this enzyme in glomerular pathophysiology.  相似文献   

7.
8.
FTY720 has been originally developed as a new immunosuppressive agent, which prolongs graft survival in organ transplantation. Adrenomedullin (AM) participates in the regulation of sodium homeostasis and has renoprotective effects. The possible involvement of renal AM in the pathophysiology of glomerulonephritis (GN) and the effect of FTY720 has been evaluated in rats. HgCl2 (1 mg/kg body weight) was inoculated subcutaneously 3 times/week for a total of 2 weeks. FTY720 (3 or 10 mg/kg) was inoculated subcutaneously daily. The proteinuria, urinary N-acetyl-beta-D-glucosaminidase (NAG) excretion and serum total cholesterol levels were increased and serum albumin level was reduced in rats with HgCl2-induced GN compared with controls. FTY720 reduced proteinuria (3 mg/kg: -25%; 10 mg/kg: -41%), urinary NAG excretion (-11%; -52%) and total cholesterol level (-21%; -55%) in a dose-dependent manner. Renal AM level and its mRNA expression were increased in rats with GN compared with controls (Peptide Cortex: +69%; Medulla: +82%; mRNA Cortex: +25%). Interestingly, FTY720 additionally increased these levels (Peptide Cortex: +38%; Medulla: +39%; mRNA Cortex: +20%). Renal AM levels correlated with urinary NAG excretion and creatinine clearance. These results suggest that FTY720 suppresses the renal damage in rats with GN and renal AM may participate in the pathophysiology of GN and the renoprotective effects of FTY720.  相似文献   

9.
Under specific conditions non-steroidal anti-inflammatory drugs (NSAIDs) may be used to lower therapy-resistant proteinuria. The potentially beneficial anti-proteinuric, tubulo-protective, and anti-inflammatory effects of NSAIDs may be offset by an increased risk of (renal) side effects. We investigated the effect of indomethacin on urinary markers of glomerular and tubular damage and renal inflammation. We performed a post-hoc analysis of a prospective open-label crossover study in chronic kidney disease patients (n?=?12) with mild renal function impairment and stable residual proteinuria of 4.7±4.1 g/d. After a wash-out period of six wks without any RAAS blocking agents or other therapy to lower proteinuria (untreated proteinuria (UP)), patients subsequently received indomethacin 75 mg BID for 4 wks (NSAID). Healthy subjects (n?=?10) screened for kidney donation served as controls. Urine and plasma levels of total IgG, IgG4, KIM-1, beta-2-microglobulin, H-FABP, MCP-1 and NGAL were determined using ELISA. Following NSAID treatment, 24 h -urinary excretion of glomerular and proximal tubular damage markers was reduced in comparison with the period without anti-proteinuric treatment (total IgG: UP 131[38-513] vs NSAID 38[17-218] mg/24 h, p<0.01; IgG4: 50[16-68] vs 10[1-38] mg/24 h, p<0.001; beta-2-microglobulin: 200[55-404] vs 50[28-110] ug/24 h, p?=?0.03; KIM-1: 9[5]-[14] vs 5[2]-[9] ug/24 h, p?=?0.01). Fractional excretions of these damage markers were also reduced by NSAID. The distal tubular marker H-FABP showed a trend to reduction following NSAID treatment. Surprisingly, NSAID treatment did not reduce urinary excretion of the inflammation markers MCP-1 and NGAL, but did reduce plasma MCP-1 levels, resulting in an increased fractional MCP-1 excretion. In conclusion, the anti-proteinuric effect of indomethacin is associated with reduced urinary excretion of glomerular and tubular damage markers, but not with reduced excretion of renal inflammation markers. Future studies should address whether the short term glomerulo- and tubulo-protective effects as observed outweigh the possible side-effects of NSAID treatment on the long term.  相似文献   

10.
Cathepsins B and L were purified from human kidney. SDS/polyacrylamide-gel electrophoresis demonstrated that cathepsins B and L, Mr 27000-30000, consist of disulphide-linked dimers, subunit Mr values 22000-25000 and 5000-7000. The pH optimum for the hydrolysis of methylcoumarylamide (-NHMec) substrates (see below) is approx. 6.0 for each enzyme. Km and kcat. are 252 microM and 364s-1 and 2.2 microM and 25.8 s-1 for the hydrolysis of Z-Phe-Arg-NHMec (where Z- represents benzyloxycarbonyl-) by cathepsins B and L respectively, and 184 microM and 158 s-1 for the hydrolysis of Z-Arg-Arg-NHMec by cathepsin B. A 10 min preincubation of cathepsin B (40 degrees C) or cathepsin L (30 degrees C) with E-64 (2.5 microM) results in complete inhibition. Under identical conditions Z-Phe-Phe-CHN2 (0.56 microM) completely inhibits cathepsin L but has little effect on cathepsin B. Incubation of glomerular basement membrane (GBM) with purified human kidney cathepsin L resulted in dose-dependent (10-40 nM) GBM degradation. In contrast, little degradation of GBM (less than 4.0%) was observed with cathepsin B. The pH optimum for GBM degradation by cathepsin L was 3.5. Cathepsin L was significantly more active in degrading GBM than was pancreatic elastase, trypsin or bacterial collagenase. These data suggest that cathepsin L may participate in the lysosomal degradation of GBM associated with normal GBM turnover in vivo.  相似文献   

11.
Cationic antigens have been observed to bind with the negatively charged glomerular basement membrane (GBM). Using the cationic reagent polyethyleneimine (PEI), the distribution of glomerular anionic sites was evaluated ultrastructurally in the early stage (2 h-day 7) of cationic antigen mediated in-situ immune complex formation type glomerulonephritis (GN) in the rat. Renal perfusion via the renal artery with 100 micrograms of cationized human IgG(pI greater than 9.5), followed by the i.v. injection of specific antibodies, led to an initial increase in urinary albumin excretion, subsequent massive globulinuria and the formation of numerous subepithelial deposits on day 7. The most striking alteration in glomerular anionic sites was observed on the epithelial cell surface coat; the PEI deposition on the epithelial cell surface was almost identical to that in control glomeruli at 2 and 4 h after the induction of GN; thereafter, on day 7, a broad loss of anionic sites was observed on flattened epithelial foot processes. In contrast, fixed anionic sites of the laminae rarae of the GBM showed no apparent alterations in the distribution and number from 2 h to day 7 and did not disappear even in the lamina rara externa adjacent to subepithelial deposits. These findings not only show that fixed anionic sites of the GBM, in contrast to the rapid decrease in those of the epithelial cell surface, are not completely neutralized or destroyed even in GN, in which cationic antigen participates in the in-situ formation of GBM-deposits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The protein from chicken egg white that inhibits cysteine proteinases, and has been named 'cystatin', was purified by ovomucin precipitation, affinity chromatography on carboxymethylpapain-Sepharose and chromatofocusing. The final purification step separated two major forms of the protein (pI 6.5 and 5.6), with a total recovery of about 20% from egg white. By use of affinity chromatography and immunodiffusion it was shown that the inhibitor is also present at low concentrations in the serum of male and female chickens. Tryptic peptide maps of the separated forms 1 and 2 of egg-white cystatin were closely similar, and each form had the N-terminal sequence Ser-Glx-Asx. The two forms showed complete immunological identity, and neither contained carbohydrate. Ki values for the inhibition of cysteine proteinases were as follows: papain (less than 1 X 10(-11)M), cathepsin B (8 X 10(-10)M), cathepsin H (about 2 X 10(-8)M) and cathepsin L (about 3 X 10(-12)M). Some other cysteine proteinases, and several non-cysteine proteinases, were found not to be significantly inhibited by cystatin. The inhibition of the exopeptidase dipeptidyl peptidase I by cystatin was confirmed and the Ki found to be 2 X 10(-10)M. Inhibitor complexes with active cysteine proteinases and the inactive derivatives formed by treatment with iodoacetate, E-64 [L-trans-epoxysuccinylleucylamido(4-guanidino)butane] and benzyloxycarbonylphenylalanylalanyldiazomethane were demonstrated by isoelectric focusing and cation-exchange chromatography. The complexes dissociated in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (with or without reduction) with no sign of fragmentation of the inhibitor. Cystatin was found not to contain a free thiol group, and there was no indication that disulphide exchange plays any part in the mechanism of inhibition.  相似文献   

13.
Anti-glomerular basement membrane (GBM) Ab-induced glomerulonephritis (GN) at late stage is thought to be mediated by T cells. However, signaling pathways of T cells that are involved in the development of anti-GBM Ab-induced GN are unclear. We have recently established transgenic mice expressing Smad7, an inhibitor of TGF-beta signaling, in mature T cells, where signaling by TGF-beta was blocked specifically in T cells. In this study, we showed that anti-GBM Ab-induced GN was suppressed in several measures in the transgenic mice including the severity of glomerular changes, proteinuria, renal function, and CD4 T cell infiltration into the glomeruli without down-regulation of CD62 ligand (CD62L) (L-selectin) expression on CD4 T cells. Furthermore, treatment with the soluble fusion protein of CD62L and IgG enhanced anti-GBM Ab-induced GN. These findings indicated that blockade of TGF-beta signaling in T cells prevented the development of anti-GBM Ab-induced GN. Because CD62L on T cells appears to be inhibitory for the development of anti-GBM Ab-induced GN, persistent expression of CD62L on CD4 T cells may explain, at least in part, the suppression of anti-GBM Ab-induced GN in the transgenic mice. Our findings suggest that the development of anti-GBM Ab-induced GN requires TGF-beta/Smad signaling in T cells.  相似文献   

14.
We have investigated the degradation of 125I-labeled bovine serum albumin by lysates of rat kidney cortical lysosomes. Maximal degradation of albumin occurred at pH 3.5-4.2, with approximately 70% of the maximal rate occurring at pH 5.0. Degradation was proportional to lysosomal protein concentration (range 100-600 micrograms) and time of incubation (1-5 h). Dithioerythritol (2 mM) stimulated albumin degradation 5- to 10-fold. Albumin degradation was not inhibited by phenylmethanesulfonyl fluoride (1 mM) or EDTA (5 mM), indicating that neither serine nor metalloproteinases are involved to a significant extent. Pepstatin (5 micrograms/ml), an inhibitor of aspartic proteinases, inhibited albumin degradation by approximately 50%. Leupeptin (10 microM) and N-ethylmaleimide (10 mM), inhibitors of cysteine proteinases, decreased albumin degradation by 34 and 65%, respectively. Combinations of aspartic and cysteine proteinase inhibitors produced nearly complete inhibition of albumin degradation. Taken together, these data indicate that aspartic and cysteine proteinases are primarily responsible for albumin degradation by renal cortical lysosomes under these conditions. In keeping with the above data, we have measured high activities of the cysteine proteinases, cathepsins B, H, and L, in cortical tubules, the major site of renal protein degradation. Using the peptidyl 7-amino-4-methylcoumarin (NHMec) substrates (Z-Arg-Arg-NHMec, for cathepsin B; Arg-NHMec for cathepsin H; and Z-Phe-Phe-CHN2-inhibitable hydrolysis of Z-Phe-Arg-NHMec corrected for inhibition of cathepsin B activity for cathepsin L) values obtained were (means +/- SE, mU/mg protein, 1 mU = production of 1 nM product/min, n = 6): cathepsin B, 2.1 +/- 0.34; cathepsin H, 1.35 +/- 0.19; cathepsin L, 14.49 +/- 1.26. In comparison, the activities of cathepsins B, H, and L in liver were: 0.56 +/- 0.03, 0.28 +/- 0.04, and 1.27 +/- 0.16, respectively.  相似文献   

15.
Although non-steroidal anti-inflammatory agents have been used to reduce levels of urinary protein excretion in patients with the nephrotic syndrome, the general usefulness of these drugs in proteinuric states remains unclear. The present study was designed to confirm the efficacy and to investigate some of the mechanism/s of action of non-steroidal anti-inflammatory agents in animals with proteinuria as the result of a single form experimental renal disease. Autologous immune complex nephropathy was produced in groups of Lewis rats by the administration of autologous tubular Fx1A antigen. After marked proteinuria developed, indomethacin (8 mg/kg/day) was administered orally to one group of animals for five days while a control group received only vehicle. The level of urinary protein excretion in the indomethacin treated animals was 420 +/- 198 mg/day compared to a level of 1180 +/- 306 seen in the untreated animals (p less than 0.05). When the indomethacin-treated and control animals were compared, the reduction in proteinuria could not be found to be associated with a change in the glomerular filtration rate, urine electrolyte or osmolar excretion rates, electron microscopic appearance of the glomerular basement membrane, or a change in the glomerular permeability to neutral dextran. Treatment of animals with either sodium salicylate or lower does of indomethacin (both of which resulted also in significant falls in urinary prostaglandin E excretion rates) failed to reduce the levels of proteinuria. Thus, indomethacin was capable of reducing the levels of protein excretion in rats with autologous immune complex nephropathy although the mechanism of action of this agent remains unclear.  相似文献   

16.
Designing cysteine proteinase inhibitors as antitrichomonal drugs requires knowledge of which cysteine proteinases are essential to the parasite. In an attempt to obtain such information, the effects of a number of cysteine proteinase inhibitors on trichomonad growth in vitro and proteinase activity were investigated. The broad specificity inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane (known as E-64) had little effect on growth of Trichomonas vaginalis (27% inhibition at 280 μM, none at 28 μM) even though the addition of 2.8 μM E-64 to growth medium resulted in inhibition of all but two (apparent molecular masses: 35 k and 49 k) of the parasite's proteinases detected by gelatin SDS-PAGE. This shows that many of the parasite's cysteine proteinases are not essential for growth in axenic culture. In contrast, a peptidyl acyloxymethyl ketone, N-benzoyloxycarbonyl-Phe-Ala-CH2OCO-(2,6,-(CF3)2)Ph, at 16 μM killed T. vaginalis and severely inhibited growth of Tritrichomonas foetus. Exposure of Trichomonas vaginalis to 16 μM of this compound for 1 h resulted in both the 35 kDa and 49 kDa proteinases being inhibited, whereas some other proteinases were unaffected. Similar distinctions between the inhibitor sensitivity of the parasite's cysteine proteinases were apparent when a biotinylated peptidyl diazomethyl ketone was used to detect active proteinases. These data suggest that the growth inhibitory effects of the peptidyl acyloxymethyl ketone are through inhibition of cysteine proteinases that are not affected when the parasites are grown in the presence of E-64. At least one of these enzymes, which include the 35 kDa and 49 kDa cysteine proteinases, must be essential and so a suitable target for chemotherapeutic attack.  相似文献   

17.
Proteinase activities in the larval midguts of the bruchids Callosobruchus maculatus and Zabrotes subfasciatus were investigated. Both midgut homogenates showed a slightly acidic to neutral pH optima for the hydrolysis of fluorogenic substrates. Proteolysis of epsilon-aminocaproil-Leu-Cys(SBzl)-MCA was totally inhibited by the cysteine proteinase inhibitors E-64 and leupeptin, and was activated by 1.5 mM DTT in both insects, while hydrolysis of the substrate Z-ArgArg-MCA was inhibited by aprotinin and E-64, which suggests that it is being hydrolysed by serine and cysteine proteinases. Gel assays showed that the proteolytic activity in larval midgut of C. maculatus was due to five major cysteine proteinases. However, based on the pattern of E-64 and aprotinin inhibition, proteolytic activity in larval midgut of Z. subfasciatus was not due only to cysteine proteinases. Fractionation of the larval midgut homogenates of both bruchids through ion-exchange chromatography (DEAE-Sepharose) revealed two peaks of activity against Z-ArgArg-MCA for both bruchid species. The fractions from C. maculatus have characteristics of cysteine proteinases, while Z. subfasciatus has one non-retained peak of activity containing cysteine proteinases and another eluted in a gradient of 250-350 mM NaCl. The proteolytic activity of the retained peak is higher at pH 8.8 than at pH 6.0 and corresponds with a single peak that is active against N-p-tosyl-GlyGlyArg-MCA, and sensitive to 250 microM aprotinin (90% inhibition). The peak contains a serine proteinase which hydrolyzes alpha-amylase inhibitor 1 from the common bean (Phaseolus vulgaris). Arch.  相似文献   

18.
An isolated perfused kidney (IPK) preparation was used to study the functional consequences of antibody-initiated glomerular complement activation in an environment devoid of circulating inflammatory cells. Control IPK, with antibody bound to the glomerular basement membrane (GBM) (mean +/- SEM, 165.0 +/- 5.7 micrograms globulin/g renal cortex), were perfused with a 5% albumin solution. Control urinary protein excretion was 0.306 +/- 0.112 mg/min, renal vascular resistance (RVR) was 4.72 +/- 0.69 mgHg/ml/min, and the glomerular filtration rate (GFR) was 0.41 +/- 0.01 ml/min/g. To produce glomerular complement activation, IPK with equal quantities of bound antibody (167.0 +/- 6.1 micrograms/g) were perfused with fresh plasma. Glomerular complement activation was associated with linear deposition of C3 on the GBM, a significant increase in protein excretion (3.317 +/- 1.077 mg/min; p less than 0.001) and RVR (10.15 +/- 1.85 mmHg/ml/min; p less than 0.001), and a decline in GFR (0.38 +/- 0.01 ml/min/g; p less than 0.05). Equivalent IPK perfused with decomplemented plasma demonstrated neither glomerular complement deposition nor augmented renal injury. By using both complement repletion and depletion techniques, this study demonstrates that antibody-initiated glomerular complement activation produces direct, neutrophil-independent renal injury. Thus, activated complement components may directly contribute to antibody-induced immune renal injury, in addition to their well established role in the recruitment of circulating inflammatory cells.  相似文献   

19.
Rat liver thiol proteinases: cathepsin B, cathepsin H and cathepsin L   总被引:1,自引:0,他引:1  
Data on following points of lysosomal thiol proteinases (cathepsins B, H and L) from rat liver are described in this paper: Partial amino acid sequence of cathepsin B, substrate specificity of cathepsin L, immunological studies of cathepsin B and H and effectiveness of E-64, specific thiol proteinase inhibitor in vivo.  相似文献   

20.
Melatonin and taurine reduce early glomerulopathy in diabetic rats   总被引:23,自引:0,他引:23  
Oxidative stress occurs in diabetic patients and experimental models of diabetes. We examined whether two antioxidants, melatonin and taurine, can ameliorate diabetic nephropathy. Enhanced expression of glomerular TGF-beta1 and fibronectin mRNAs and proteinuria were employed as indices of diabetic nephropathy. Experimental diabetes was induced by intravenous injection of streptozotocin 50 mg/kg. Two days after streptozotocin, diabetic rats were assigned to one of the following groups: i) untreated; ii) melatonin supplement by 0.02% in drinking water; or iii) taurine supplement by 1% in drinking water. Four weeks after streptozotocin, diabetic rats (n = 6: plasma glucose 516+/-12 mg/dl) exhibited 6.1 fold increase in urinary protein excretion, 1.4 fold increase in glomerular TGF-beta1 mRNA, 1.7 fold increase in glomerular fibronectin mRNA, 2.2 fold increase in plasma lipid peroxides (LPO), and 44 fold increase in urinary LPO excretion above the values in control rats (n = 6: plasma glucose 188+/-14 mg/dl). Chronic administration of melatonin (n = 6) and taurine (n = 6) prevented increases in glomerular TGF-beta1 and fibronectin mRNAs and proteinuria without having effect on blood glucose. Both treatments reduced lipid peroxidation by nearly 50%. The present data demonstrate beneficial effects of melatonin and taurine on early changes in diabetic kidney and suggest that diabetic nephropathy associated with hyperglycemia is largely mediated by oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号