首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we focused on the drivers of micro- and mesohabitat variation of drift in a small trout stream with the goal of understanding the factors that influence the abundance of prey for drift-feeding fish. We hypothesized that there would be a positive relationship between velocity and drift abundance (biomass concentration, mg/m3) across multiple spatial scales, and compared seasonal variation in abundance of drifting terrestrial and aquatic invertebrates in habitats that represent the fundamental constituents of stream channels (pools, glides, runs, and riffles). We also examined how drift abundance varied spatially within the water column. We found no relationship between drift concentration and velocity at the microhabitat scale within individual pools or riffles, suggesting that turbulence and short distances between high- and low-velocity microhabitats minimize changes in drift concentration through settlement in slower velocity microhabitats. There were also minimal differences in summer low-flow drift abundance at the mesohabitat scale, although drift concentration was highest in riffle habitats. Similarly, there was no differentiation of drifting invertebrate community structure among summer samples collected from pools, glides, runs, and riffles. Drift concentration was significantly higher in winter than in summer, and variation in drift within individual mesohabitat types (e.g., pools or riffles) was lower during winter high flows. As expected, summer surface samples also had a significantly higher proportion of terrestrial invertebrates and higher overall biomass than samples collected from within the water column. Our results suggest that turbulence and the short length of different habitat types in small streams tend to homogenize drift concentration, and that spatial variation in drift concentrations may be affected as much by fish predation as by entrainment rates from the benthos. Handling editor: Robert Bailey  相似文献   

2.
Gillnets are the primary fishing gear used in tropical multi-species fisheries along the Iranian southern coastal waters. Therefore, it is necessary to investigate the catch composition and performance of fishing gear for the possible negative effects on the stocks. Catch data and length frequency distribution (just for Kingfish, S. commerson) were examined for three kinds of drift gillnets: 1) small-meshed nets, 2) medium-meshed nets, and 3) nets with a single mesh size of 165 mm. This study was conducted in the northern part of the Persian Gulf from 2014 to 2015. Overall, 60 species of 32 families from four fish groups (i.e., Pelagic, Demersal, Benthopelagic, and Reef-associated) were recorded. Each net-type was used to target more than one species, with most species being considered as bycatch. Commercial fish species were caught the most, accounting for around 83% of the total catches. S. commerson is targeted by all kinds of nets, with medium-meshed nets being most efficient. The majority of S. commerson caught by the nets were immature. Overall, the total ban of gillnets with small mesh sizes is recommended to protect young S. commerson and prevent the possible risk of growth overfishing. Studies on gillnet selectivity are needed to set minimum mesh regulations for S. commerson and other commercial species if the potential impacts of gillnet are known.  相似文献   

3.
The results of a test of a mechanistic encounter model that predicts the size-frequency composition of the diet of drift-feeding coho salmon ( Oncorhynchus kisulch , Walbaum) are described. When all taxa in the drift were included in the model the predicted and actual diets differed significantly, although the model explained most of the variance between the diet and the predictions of a null model. When non-consumed taxa, including the distasteful and aposematic taxon Hydracarina, were excluded from the drift composition there was no significant difference between predicted and actual diets. The model's goodness of fit increased when it was modified to predict the biomass size-frequency diet composition, explaining 99% of the weighted sum of squared deviations between the diet and a null model. A number of alternate models are tested and a potentially useful simplification of the model is identified.  相似文献   

4.
Nocturnal drift of mayfly nymphs as a post-contact antipredator mechanism   总被引:3,自引:0,他引:3  
1. The predominantly nocturnal constrained drift of stream invertebrates is commonly regarded as a behaviour that avoids encounters with visually foraging fish in the water column. The alternative explanation, that drift peaks are caused by bottom-feeding, nocturnal predators, has rarely been tested.
2. We examined these hypotheses by collecting invertebrate drift in five streams in northern Finland: one with brown trout ( Salmo trutta , a drift-feeding fish), one with alpine bullhead ( Cottus poecilopus , a benthic fish), one with both species, and two fishless streams.
3. Drift by Baetis mayflies was aperiodic or slightly diurnal in both fishless streams on all sampling occasions. In contrast, drift was nocturnal in streams with trout and, to a lesser extent, in the stream with bullhead. Non-dipteran prey drifted mainly nocturnally in all streams with fish, whereas Diptera larvae were less responsive to the presence of fish.
4. In laboratory experiments, bullheads were night-active, causing a much higher frequency of drift by touching Baetis at night than during the day. Thus, increased nocturnal drift may serve to avoid both visual predators (a pre-contact response) and benthic fish (a post-contact response). In streams with bottom-feeding fish, nocturnal drift should be caused by increased drift by night rather than by reduced drift by day.  相似文献   

5.
6.
Estimates of age derived from daily ring counts from otoliths and capture rates of larval June sucker Chasmistes liorus were used to determine the relationship between discharge rates of the Provo River and residence time and patterns of larval drift. During 1997, larval drift occurred over a 22 day period when discharge rates were low (mean ±s.d. 3·2 ± 0·0 m3 s?1). In 1998, larval drift occurred in two separate events over a 40 day period. Discharge was higher during the first larval drift period (19 days; 24·8 ± 1·3 m3 s?1) and lower during the second larval drift period (17 days; 7·0 ± 0·9 m3 s?1). In 1997, no larval fish were collected at the lowermost transect on the Provo River (nearest Utah Lake), and few larvae >21 days of age were found. During the first drift period of 1998, larval C. liorus were collected at all transects, and mean age of larvae collected between upstream and downstream transects increased by c. 7 days. During the second drift period of 1998, only a few were collected in the lowermost transects, and age did not increase with proximity to the lake. Patterns in catch and age distribution of larval C. liorus in the lower Provo River suggest that recruitment failure occurs during the larval drift period in years with insufficient discharge to transport larvae into the lake.  相似文献   

7.
Macroinvertebrate density, biomass and drift were studied from moss-covered and moss-free channels in the South Fork Salmon River, Idaho. Insect densities were compared for 10 different substrate types and locations involving moss (Fontinalis neo-mexicana), sand, pebbles and cobbles. An ANOVA test demonstrated that insect densities varied significantly with substrate type (P < 0.05), and that total insect density in moss clumps differed significantly from densities in mineral substrates. Insect densities were 4–18 times greater in moss clumps than in mineral substrates under and adjacent to moss; sands under moss supported the lowest densities. During most tests, densities in pebble and cobble substrates adjacent to moss clumps were not significantly different from those found in similar substrates in the moss-free channel. The 20% moss-covered channel had 1.6 to 7.2 greater insect density and 1.4 to 6.1 greater biomass than did the moss-free channel for the tests conducted. Generally, midges (Chironomidae) made up over 50% of the insect community; annelids were the principal non-insect invertebrates.In spite of greater insect density and biomass in a moss-covered than in the moss-free channel, we did not demonstrate universally increased drift of the immature stages from the moss-covered channel, at least during daylight hours. As a consequence, we infer that salmonid fishes, feeding primarily on drifting insects during the daytime, may not derive increased caloric benefit from moss habitats until the insects emerge as adults.  相似文献   

8.
We study fixation probabilities and times as a consequence of neutral genetic drift in subdivided populations, motivated by a model of the cultural evolutionary process of language change that is described by the same mathematics as the biological process. We focus on the growth of fixation times with the number of subpopulations, and variation of fixation probabilities and times with initial distributions of mutants. A general formula for the fixation probability for arbitrary initial condition is derived by extending a duality relation between forwards- and backwards-time properties of the model from a panmictic to a subdivided population. From this we obtain new formulae(formally exact in the limit of extremely weak migration) for the mean fixation time from an arbitrary initial condition for Wright's island model, presenting two cases as examples. For more general models of population subdivision, formulae are introduced for an arbitrary number of mutants that are randomly located, and a single mutant whose position is known. These formulae contain parameters that typically have to be obtained numerically, a procedure we follow for two contrasting clustered models. These data suggest that variation of fixation time with the initial condition is slight, but depends strongly on the nature of subdivision. In particular, we demonstrate conditions under which the fixation time remains finite even in the limit of an infinite number of demes. In many cases-except this last where fixation in a finite time is seen--the time to fixation is shown to be in precise agreement with predictions from formulae for the asymptotic effective population size.  相似文献   

9.
Most conifer species occur in large continuous populations, but radiata pine, Pinus radiata, occurs only in five disjunctive natural populations in California and Mexico. The Mexican island populations were presumably colonized from the mainland millions of years ago. According to Axelrod (1981), the mainland populations are relicts of an earlier much wider distribution, reduced some 8,000 years ago, whereas according to Millar (1997, 2000), the patchy metapopulation-like structure is typical of the long-term population demography of the species. We used 19 highly polymorphic microsatellite loci to describe population structure and to search for signs of the dynamics of population demography over space and time. Frequencies of null alleles at microsatellite loci were estimated using an approach based on the probability of identity by descent. Microsatellite genetic diversities were high in all populations [expected heterozygosity (H(e)) = 0.68-0.77], but the island populations had significantly lower estimates. Variation between loci in genetic differentiation (F(ST)) was high, but no locus deviated statistically significantly from the rest at an experiment wide level of 0.05. Thus, all loci were included in subsequent analysis. The average differentiation was measured as F(ST) = 0.14 (SD 0.012), comparable with earlier allozyme results. The island populations were more diverged from the other populations and from an inferred common ancestral gene pool than the mainland ones. All populations showed a deficiency of expected heterozygosity given the number of alleles, the mainland populations more so than the island ones. The results thus do not support a recent important contraction in the mainland range of radiata pine.  相似文献   

10.
Scientists studying how languages change over time often make an analogy between biological and cultural evolution, with words or grammars behaving like traits subject to natural selection. Recent work has exploited this analogy by using models of biological evolution to explain the properties of languages and other cultural artefacts. However, the mechanisms of biological and cultural evolution are very different: biological traits are passed between generations by genes, while languages and concepts are transmitted through learning. Here we show that these different mechanisms can have the same results, demonstrating that the transmission of frequency distributions over variants of linguistic forms by Bayesian learners is equivalent to the Wright–Fisher model of genetic drift. This simple learning mechanism thus provides a justification for the use of models of genetic drift in studying language evolution. In addition to providing an explicit connection between biological and cultural evolution, this allows us to define a ‘neutral’ model that indicates how languages can change in the absence of selection at the level of linguistic variants. We demonstrate that this neutral model can account for three phenomena: the s-shaped curve of language change, the distribution of word frequencies, and the relationship between word frequencies and extinction rates.  相似文献   

11.
Communities are mostly composed of rare species; yet, the factors that determine their patterns of occurrence remain obscure. Theory predicts that, in contrast with common species, the occurrence of rare species will be poorly correlated with environmental variables (niches) and more affected by stochasticity (ecological drift), but how this pattern varies across different trophic groups is still poorly understood. Here, we compared the ability of environmental variables (bottom–up biotic niches) to predict the occurrence of plant‐dwelling arthropods across different abundance classes in the Cape Floristic Region of South Africa. We compared three trophic groups, including 104 herbivorous hemipteran, 171 parasitoid wasp and 84 spider species, totalling 4511 individuals in 48 quadrats. To quantify bottom–up biotic niches, we studied the influences of species composition of plants on hemipterans, and of plants and hemipterans on spiders and wasps. We compared the observed strength of the correlation between rare species and their niches with expectations that were generated by repeatedly rarefying abundant species. A large proportion of arthropod species were very rare, i.e. with only one or two individuals (49–55%). Although rarefying abundant species greatly decreased the correlation with bottom–up biotic niches, bottom–up biotic niches generally better predicted the occurrence of rarefied abundant species than very rare ones, suggesting a greater influence of drift on very rare arthropods. That is, (very) rare arthropods are distributed more randomly than rarefied abundant species. Nevertheless, trophic groups differed in the details of their response to bottom–up biotic niches. Plant species composition was a better predictor of rarefied abundant than truly rare hemipterans. In contrast, the importance of bottom–up biotic niches among abundance classes varied less visibly in spiders and wasps. Our study thus suggests that the importance of niches in structuring arthropod communities depends on species rarity and trophic group.  相似文献   

12.
This study analyzes peer effects on childhood obesity using data from the first two waves of the IDEFICS study, which applies several anthropometric and other measures of fatness to approximately 14,000 children aged two to nine participating in both waves in 16 regions of eight European countries. Peers are defined as same-sex children in the same school and age group. The results show that peer effects do exist in this European sample but that they differ among both regions and different fatness measures. Peer effects are larger in Spain, Italy, and Cyprus – the more collectivist regions in our sample – while waist circumference generally gives rise to larger peer effects than BMI. We also provide evidence that parental misperceptions of their own children's weight goes hand in hand with fatter peer groups, supporting the notion that in making such assessments, parents compare their children's weight with that of friends and schoolmates.  相似文献   

13.
Macro-invertebrate drift was measured entering and leaving two pools on the Middle Fork of the Cosumnes River, a third order California stream. Drift rates for Baetis spp., Chironomidae, Simulium spp., Capniidae and total drift were calculated. Significant differences in the numbers of organisms entering the two pools were found for Baetis, Chironomidae, and Capniidae. Comparisons of drift rates at the upstream and downstream ends of each pool showed that the abundance of Chironomidae, Simulium, Capniidae and total drift changed in different directions across the pools. The numbers of organisms leaving the two pools, however, were not significantly different for Baetis, Simulium, Capniidae and total drift. These findings lead us to hypothesize that long pools act as barriers, not filters, to stream macro-invertebrate drift. The composition of drift leaving the pools in this experiment appeared to be controlled by the composition of the benthic habitat at the tail of the pool and not by the composition of upstream drift entering the pools.  相似文献   

14.
This study investigates whether peer obesity is a driver of individual weight changes in public school children and whether the impact of peer effects changes as children age. Quantifying peer effects is important for understanding the social determinants of obesity and for planning effective school wellness policies. However, the extant empirical research on peer effects is limited due to difficulties in separating causal influences from confounding factors. This study overcomes some of these difficulties by using a within-school, across-cohort empirical design to separate confounding factors at the individual, school and school-grade level for over one million public school children. The results show that increases a one standard deviation increase in average classmate body mass index (BMI) leads to a modest but meaningful increase of 0.395 standard deviation increase in a child's own BMI. Peer-effects are highest (0.813) for children in Kindergarten and decline with age. These findings suggest that the critical time for school-grade level intervention may be in the earliest ages of childhood development.  相似文献   

15.
Evolutionary processes are routinely modelled using ‘ideal’ Wright–Fisher populations of constant size N in which each individual has an equal expectation of reproductive success. In a hypothetical ideal population, variance in reproductive success (Vk) is binomial and effective population size (Ne) = N. However, in any actual implementation of the Wright–Fisher model (e.g., in a computer), Vk is a random variable and its realized value in any given replicate generation () only rarely equals the binomial variance. Realized effective size () thus also varies randomly in modelled ideal populations, and the consequences of this have not been adequately explored in the literature. Analytical and numerical results show that random variation in  and  can seriously distort analyses that evaluate precision or otherwise depend on the assumption that  is constant. We derive analytical expressions for Var(Vk) [4(2N – 1)(N – 1)/N3] and Var(Ne) [N(N – 1)/(2N – 1) ≈ N/2] in modelled ideal populations and show that, for a genetic metric G = f(Ne), Var(?) has two components: VarGene (due to variance across replicate samples of genes, given a specific ) and VarDemo (due to variance in ). Var(?) is higher than it would be with constant Ne = N, as implicitly assumed by many standard models. We illustrate this with empirical examples based on F (standardized variance of allele frequency) and r2 (a measure of linkage disequilibrium). Results demonstrate that in computer models that track multilocus genotypes, methods of replication and data analysis can strongly affect consequences of variation in . These effects are more important when sampling error is small (large numbers of individuals, loci and alleles) and with relatively small populations (frequently modelled by those interested in conservation).  相似文献   

16.
The antibacterial effect of Yb3+, the free porphyrin base 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin (H2TMP; 1), and the corresponding Yb3+ porphyrinato complex [Yb(III)(TMP)(H2O)3]+ Cl- (Yb(TMP); 2) towards Staphylococcus aureus was investigated by stop-flow microcalorimetry. By analyzing the obtained metabolic thermogenic curves, crucial parameters such as rate constant of bacterial growth (k), half inhibitory concentration (IC50), and generation time (t(G)) were determined. The antibacterial activities of the three compounds tested was 2>1>Yb3+, with an IC50 value of 273 mg/l for complex 2. The Yb3+ porphyrinato complex is proposed to benefit from synergetic effects of Yb3+ and the free porphyrin 1.  相似文献   

17.
A small first-order, Appalachian Mountain stream received successive seasonal treatments with the insecticide, methoxychlor. Despite an application rate of 10 mg/1 methoxychlor for 4 hours, based on stream discharge, only a small fraction (1.6%) of the insecticide was exported to downstream reaches for a 31 h period during and following treatment. Most of the insecticide was incorporated into sediments of the streambed, which had residues ranging from 0.038 to 11.7 µg methoxychlor/g dry wt of sediments in June 1986 following treatments in December 1985 and March 1986. Despite low concentrations of methoxychlor measured in stream water (maximum = 128 µg/l) during the initial treatment, massive drift (> 950 000 organisms, and 70 g AFDM biomass) occurred from a stream area of about 144 m2. Numerically, collector-gatherer taxa (primarily Chironomidae) dominated drift (63 %) followed by shredders and predators; however, biomass of drift was dominated by shredders (48.9%), followed by predators and collector-gatherers. Compared with pre-treatment benthic abundances, insects were reduced by 75% following the initial treatment in December 1985, and 85% following an additional treatment in March 1986. Benthic abundances of non-insect taxa showed no significant changes. Benthic abundances of shredder, collector-filterer, and scraper functional groups exhibited significant decreases in the first month following treatment. Although benthic abundances of collector-gatherer and predator taxa were reduced by 48.6 and 40.5%, respectively, the reduction was not statistically significant because of high-sample variance. Comparisons of drift composition during the initial treatment with successive quarterly treatments (March 1986 to January 1988) reflected of ongoing pesticide disturbance of the biota as the community structure shifted from one consisting of a diverse insect and non-insect fauna toward one dominated by copepods, oligochaetes, Collembola, and chironomids.  相似文献   

18.
Summary The larval drift of the fire salamander was investigated over a period of three years in a mountain brook (Niederbergisches Land, F.R. Germany), as well in a laboratory water channel. The rate of larval drift fluctuated between 19% and 41% of the total population of larvae in a defined section of the brook during these three years. Most (83%) of the drifting larvae were hatchlings or very young stages. The drift was dependent on the strength of the current, the number of spawning females, the presence of suitable hiding places, sufficient space and adequate food. Hungry larvae drifted more often than satiated animals. The drift behaviour of hatchlings differed distinctly from that of older larvae. The significance of ecological factors on larval drift is discussed. It is evidently a more important factor in selection than has hitherto been recognized.  相似文献   

19.
Tin-Yu J. Hui  Austin Burt 《Genetics》2015,200(1):285-293
The effective population size Ne is a key parameter in population genetics and evolutionary biology, as it quantifies the expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating Ne have been described, the most direct of which uses allele frequencies measured at two or more time points. A new likelihood-based estimator NB^ for contemporary effective population size using temporal data is developed in this article. The existing likelihood methods are computationally intensive and unable to handle the case when the underlying Ne is large. This article tries to work around this problem by using a hidden Markov algorithm and applying continuous approximations to allele frequencies and transition probabilities. Extensive simulations are run to evaluate the performance of the proposed estimator NB^, and the results show that it is more accurate and has lower variance than previous methods. The new estimator also reduces the computational time by at least 1000-fold and relaxes the upper bound of Ne to several million, hence allowing the estimation of larger Ne. Finally, we demonstrate how this algorithm can cope with nonconstant Ne scenarios and be used as a likelihood-ratio test to test for the equality of Ne throughout the sampling horizon. An R package “NB” is now available for download to implement the method described in this article.  相似文献   

20.
Abstract Ants play an important role in Australian biodiversity and environmental impact assessments, with pitfall-trapping being the principal sampling method. However, the relationship between trap diameter and ant species catch has not been investigated in the context of survey design. Using four different trap diameters, each at a density of one trap per 100 m2, the present study asks three questions: (i) given an equal number of traps, do traps with larger diameters catch more species than smaller-diameter traps?; (ii) do traps with small diameters bias against large or rare species?; (iii) for equal area of the trap mouth, do small but more numerous traps catch more species than fewer but large traps? A total of 84 species were sampled within the 1600 m2 study site, with numbers of species for trap diameters of: 18mm (46 species), 42mm (56 species), 86mm (62 species) and 135mm (64 species). At equal trap density, 18 mm traps caught significantly fewer species than larger traps. Traps of 86 mm and 135mm were no more efficient than 42mm traps. Only 86mm and 135mm traps caught all species > 10mm in length (6 species). For equal area of the trap mouth, small traps were more efficient than large traps. Differences in the catch of the different-sized traps were due primarily to different capture rates of the rare species (40 species): 18mm traps caught 25% of rare species, 42 mm caught 41%, 86 mm caught 44% and 135 mm caught 52%. The role of rare ant species in environmental impact studies is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号