首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To study the relationship between oxidative stress and potential free radical damage associated with photocopying and to explore a role for ozone emitted during the photocopying process. METHODS: 80 photocopying operators (PO) and 80 healthy volunteers (HV) were enrolled in a random control study design, in which the level of lipoperoxide (LPO, thiobarbituric acid reactive substances, TBARS) in erythrocytes and the levels of vitamin C (VC), vitamin E (VE) and beta-carotene (beta-CAR) in plasma as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in erythrocytes were determined by spectrophotometric methods. RESULTS: Compared with the average values of the above biochemical parameters in the HV group, the average value of LPO (TBARS) in erythrocytes in the PO group was significantly increased (P < 0.0001), while the average values of VC, VE and beta-CAR in plasma as well as those of SOD and CAT in erythrocytes in the PO group were significantly decreased (P < 0.0001). Pearson product-moment correlation analysis showed that with the increase of the ozone level in photocopying sites and the PO duration of exposure to ozone, the level of LPO in erythrocytes in the operators was increased (P < 0.001), while the levels of VC, VE and beta-CAR in plasma as well as the activities of SOD and CAT in erythrocytes in the operators were decreased (P < 0.01-0.0001). CONCLUSION: The findings in this study suggest that ozone causes oxidative damage in copier operatives.  相似文献   

2.
Organophosphate (OP) pesticides such as dimethoate and malathion intoxication has been shown to produce oxidative stress due to the generation of free radicals and alter the antioxidant defense system in erythrocytes. It is possible that vitamin E being present at the cell membrane site may prevent OP-induced oxidative damage. In the present study, rats were pretreated orally with vitamin E (250 mg/kg body wt, twice a week for 6 weeks) prior to oral administration of a single low dose of dimethoate and/or malathion (0.01% LD(50)). The result showed that treatment with OP increased lipid peroxidation (LPO) in erythrocytes, however, vitamin E pretreated rats administered OP's showed decreased LPO in erythrocytes. The increase in the activities of superoxide dismutase (SOD) and catalase (CAT) and total-SH content in erythrocytes from dimethoate and/or malathion treated rats as compared to control appears to be a response towards increased oxidative stress. Vitamin E pretreated animals administered OP's showed a lowering in these parameters as compared to OP treated rats which indicates that vitamin E provide protection against OP-induced oxidative stress. The glutathione-S-transferase (GST) activity in erythrocytes was inhibited in OP intoxicated rats which partially recovered in vitamin E pretreated animals administered OP's. Inhibition in erythrocyte and serum acetylcholinesterase (AChE) activity was not relieved in vitamin E pretreated rats administered OP's probably due to the competitive nature of enzyme inhibition by OP's. The results show that vitamin E may amelierate OP-induced oxidative stress by decreasing LPO and altering antioxidant defense system in erthrocytes.  相似文献   

3.
The present study aimed to test the effects of melatonin on oxidative stress in the yellowtail clownfish, Amphiprion clarkii, as produced by light emitting diodes (LEDs): red, green, and blue. We investigated the effects of the different LEDs on oxidative stress by measuring the mRNA expression of arylalkylamine N-acetyltransferase (AANAT2), the expression and activities of antioxidant enzymes (superoxide dismutase, SOD (EC 1.15.1.1); and catalase, CAT (EC 1.11.1.6)), and plasma H2O2 and plasma melatonin levels. In red light, the expression of AANAT2, SOD, and CAT mRNA was significantly higher than those under the other light spectra. SOD and CAT activities and plasma H2O2 and melatonin levels were also significantly higher for the red spectra than those for the other light spectra. These results indicate that red light induces oxidative stress. To investigate the effects of melatonin on oxidative stress, we injected melatonin into live fish (in vivo) or treated cultured pineal organ (in vitro) with melatonin. We found that AANAT2, SOD, and CAT mRNA expression levels, SOD and CAT activities, and plasma H2O2, lipid peroxidation (LPO) and melatonin levels were significantly lower than those for the controls. Therefore, our results indicate that red light induces oxidative stress and melatonin plays the role of a strong antioxidant in yellowtail clownfish.  相似文献   

4.
The purpose of this study was to determine the effect of urinary tract infection (UTI) on antioxidant systems and lipid peroxidation (LPO) levels during pregnancy. We also investigated if these antioxidant systems and LPO levels differed in each trimester. One hundred forty-three nonpregnant women, as a control group, and 77 pregnant women were included in the study. Urine cultures were performed according to standard techniques. Catalase (CAT), superoxide dismutase (SOD), and LPO levels were measured using a spectrophotometer. UTI was observed in 14 of 77 pregnant women and the isolated microorganisms were Escherichia coli, Klebsiella pneumoniae, and Staphylococcus saprophyticus. CAT, SOD, and LPO levels were increased in pregnant women compared with nonpregnant women (P<.01). CAT, SOD activities, and LPO levels were increased from the first trimester to the third trimester in pregnancy without UTI. However, CAT and SOD activities were decreased, LPO levels were increased from the first trimester to the third trimester in pregnancy with UTI (P<.01). Pregnancy causes oxidative stress and also UTI during pregnancy may aggravate oxidative stress.  相似文献   

5.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

6.
Excessive generation of reactive oxygen species (ROS) can induce oxidative damage to vital cellular molecules and structures including DNA, lipids, proteins, and membranes. Recently, melatonin has attracted attention because of their free radical scavenging and antioxidant properties. The aim of this study was to evaluate the possible protective role of melatonin against atrazine-induced oxidative stress in rat erythrocytes in vivo. Adult male albino rats of Wistar strain were randomly divided into four groups. Control group received isotonic saline; melatonin (10 mg/kg bw/day) group; atrazine (300 mg/kg of bw/day) group; atrazine + melatonin group. Oral administration of atrazine and melatonin was given daily for 21 days. Oxidative stress was assessed by determining the glutathione (GSH) and malondialdehyde (MDA) level, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G-6-PD) in the erythrocytes of normal and experimental animals. A significant increase in the MDA levels and decrease in the GSH was observed in the atrazine treated animals (P < 0.05). Also, significant increase in the activities of SOD, CAT, GPx, and GST were observed in atrazine treated group compared to controls (P < 0.05). Moreover, significant decrease in protein, total lipids, cholesterol, and phospholipid content in erythrocyte membrane were demonstrated in atrazine treated rats. Administration of atrazine significantly inhibits the activities of G-6-PD and membrane ATPases such as Na(+)/K(+)-ATPase, Mg(2+)-ATPase, and Ca(2+)-ATPase (P < 0.05). Scanning electron microscopic (SEM) examination of erythrocytes revealed morphological alterations in the erythrocytes of atrazine treated rats. Furthermore, supplementation of melatonin significantly modulates the atrazine-induced changes in LPO level, total lipids, total ATPases, GSH, and antioxidant enzymes in erythrocytes. In conclusion, the increase in oxidative stress markers and the concomitant alterations in antioxidant defense system indicate the role of oxidative stress in erythrocytes of atrazine-induced damage. Moreover, melatonin shows a protective role against atrazine-induced oxidative damage in rat erythrocytes.  相似文献   

7.
The influence of antigen stimulation on the oxidative stress parameters in two groups of rabbits-inbred and outbred were explored by evaluation of the level of lipid peroxidation products (MDA) in the plasma membrane, and the activity of erythrocyte antioxidant defense enzymes superoxide dismutase (SOD) and catalase (CAT). There was not a significant difference between levels of MDA in inbred and outbred rabbits before immunization. However, SOD activity in inbred rabbits was significantly increased in comparison with that of outbred (p = 0.006). Significantly higher plasma levels of lipid peroxidation products were detected in both inbred and outbred rabbits during immune response in comparison to the corresponding groups before immunization (p = 0.008 and p = 0.002). SOD and CAT activities in erythrocytes of rabbits during immune response were also significantly increased compared to that before immunization. In addition, during immune response SOD and CAT activities were found to be positively correlated to each other in both inbred and outbred rabbits (r = 0.727 and r = 0.916). In conclusion, our results suggest the presence of an increased oxidative stress during the antigen stimulation accompanied by an adaptive increase of SOD and CAT activities. 30 days after immunization, the plasma levels of MDA and the activities of SOD and CAT in erythrocytes decreased and reached values close to the controls.  相似文献   

8.
Malathion is a pesticide with high potential for human exposure. However, it is possible that during the malathion metabolism, there is generation of reactive oxygen species (ROS) and malathion may produce oxidative stress in intoxicated rats. The present study was therefore undertaken to determine malathion-induced lipid peroxidation (LPO), protein carbonylation and to determine whether malathion intoxication alters the antioxidant system in brain rats. Malathion was administered intraperitoneally in the acute and chronic protocols in the doses of 25, 50, 100 and 150 mg malathion/kg. The results showed that LPO in brain increased in both protocols. The increased oxidative stress resulted in an increased in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), observed in cortex, striatum in the acute malathion protocol and hippocampus in the chronic malathion protocol. Our results demonstrated that malathion induced oxidative stress and modulated SOD and CAT activity in selective brain regions.  相似文献   

9.
Nitrosamine compounds are known hepatic carcinogens. In the metabolism of nitrosamines, such as N-nitrosodiethylamine (NDEA), there is evidence of the formation of reactive oxygen species (ROS) resulting in oxidative stress, which may be one of the factors in the etiology of cancer. The formation of ROS may alter the antioxidant system, while the presence of Vitamin E may counteract NDEA induced oxidative stress. This study was planned to determine whether pre-treatment with Vitamin E (40 mg/kg body weight, i.p., twice a week for 4 weeks) to NDEA induced rats provides protection against oxidative stress in liver caused by the carcinogen. A single necrogenic dose of NDEA (200mg/kg body weight) was administered i.p. to the male albino rats with or without Vitamin E pre-treatment and the animals were sacrificed on Days 7, 14 or 21 after the administration of NDEA. The result showed enhanced levels of hepatic lipid peroxidation (LPO) and conjugated dienes of NDEA treated rats as the indices of oxidative stress, however, Vitamin E pre-treated rats administered NDEA showed decreased LPO and conjugated dienes (Day 21). Superoxide dismutase (SOD) activity in liver was not altered significantly in NDEA treated rats with or without Vitamin E pre-treatment. Catalase (CAT) activity was inhibited with NDEA treatment, however, Vitamin E pre-treatment showed recovery in hepatic CAT activity (Days 14 and 21). Total and Se-glutathione peroxidase (GSH-Px) activities and glutathione-S-transferase (GST) activity in liver increased in NDEA treated rats irrespective of Vitamin E pre-treatment. Glutathione reductase (GSH-R) activity as well as total glutathione (GSH) content in liver decreased in NDEA treated animals, both of which were recovered in Vitamin E pre-treated rats administered NDEA. Activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were increased significantly following NDEA treatment to rats with or without Vitamin E pre-treatment. The activities of AST and ALT enzymes were significantly reduced on Days 14 and 21 and ALP activity was reduced on Day 21 in NDEA+Vitamin E treated animals when compared to NDEA treated alone. LDH enzyme activity was normalized on Day 14 in Vitamin E pre-treated animals administered NDEA. However, the AST, ALT and ALP enzyme activities remained high in all treatment groups as compared to control group. Normal control and Vitamin E treated alone rats revealed normal histology of liver. On the other hand, NDEA treated animals showed alterations in normal hepatic histoarchitecture, which comprised of necrosis and vacuolization of the cells. However, the rats treated with Vitamin E+NDEA showed that the liver cells were normal, with very little necrosis (Day 21). This study concludes that the pre-treatment with Vitamin E prior to the administration of NDEA, reduced the degree of oxidative stress, although this vitamin produced only slight changes in the hepatic injury, in a time-dependent manner.  相似文献   

10.
1,2-dimethylhydrazine (DMH) is a colon carcinogen which undergoes oxidative metabolism in the liver. We have investigated the modulatory effect of fenugreek seeds (a spice) on colon tumor incidence as well as hepatic lipid peroxidation (LPO) and antioxidant status during DMH-induced colon carcinogenesis in male Wistar rats. In DMH treated rats, 100% colon tumor incidence was accompanied by enhanced LPO and a decrease in reduced glutathione (GSH) content as well as a fall in glutathione peroxidase (GPx), glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) activities. Inclusion of fenugreek seed powder in the diet of DMH treated rats reduced the colon tumor incidence to 16.6%, decreased the LPO and increased the activities of GPx, GST, SOD and CAT in the liver. We report that fenugreek modulates DMH-induced hepatic oxidative stressduring colon cancer  相似文献   

11.
目的:研究冠脉搭桥术后肺水肿患者氧化应激状态变化观察,评价氧化应激状态与肺水肿的关联性,为临床减轻冠脉搭桥术后肺部并发症提供依据。方法:将本院2014年1月-2015年6月收治的冠脉搭桥术后肺水肿患者40例作为试验组,另选同期冠脉搭桥术后未发生肺水肿患者40例作为对照组。检测并比较两组患者术后3天、7天及14天的丙二醛(MDA)、总抗氧化能力(TAC)、过氧化氢酶(CAT)、C反应蛋白(CRP)、过氧化脂(LPO)及超氧化物歧化酶(SOD)的水平变化。结果:与对照组患者相比,试验组患者术后3 d、7 d、14 d三个时间点MDA,LPO及CRP表达水平均显著提高,而TAC,SOD及CAT表达水平均显著降低,差异均具有统计学意义(P0.05)。与术后3 d相比,两组患者术后7 d、14 d两个时间点的MDA,LPO和CRP表达水平均显著降低,而TAC,SOD及CAT表达水平均显著提高,差异具有统计学意义(P0.05)。结论:冠脉搭桥术后肺水肿的发生与患者氧化应激状态密切相关,机体自由基增多、抗氧化能力下降是肺水肿发生的重要机制。  相似文献   

12.
Recent studies have shown that lead (Pb) could disrupt tissue prooxidant/antioxidant balance which lead to physiological dysfunction. Natural antioxidants are particularly useful in such situation. Current study was designed to investigate efficacy of green tea extract (GTE), on oxidative status in brain tissue and blood caused by chronic oral Pb administration in rats. Four groups of adult male rats (each 15 rats) were utilized: control group; GTE-group (oral 1.5% w/v GTE for 6 weeks); Pb-group (oral 0.4% lead acetate for 6 weeks), and Pb+GTE-group (1.5% GTE and 0.4% lead acetate for 6 weeks). Levels of prooxidant/antioxidant parameters [lipid peroxides (LPO), nitric oxides (NO), total antioxidant capacity (TAC), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD)] in plasma, erythrocytes, and brain tissue homogenate were measured using colorimetric methods. Pb concentrations in whole blood and brain tissue homogenate were measured by atomic absorption. In Pb-group, levels of LPO were higher while NO and GSH were lower in plasma, erythrocytes, and brain tissue than controls. TAC in plasma, SOD in erythrocytes, and GST in brain tissue homogenate were lower in Pb-group versus control. GTE co-administrated with Pb-reduced Pb contents, increased antioxidant status than Pb-group. In erythrocytes, Pb correlated positively with LPO and negatively with NO, GSH, SOD, and Hb. In brain tissue homogenate, Pb correlated positively with LPO and negatively with GSH. This study suggests that lead induce toxicity by interfering balance between prooxidant/antioxidant. Treatment of rats with GTE combined with Pb enhances antioxidant/ detoxification system which reduced oxidative stress. These observations suggest that GTE is a potential complementary agent in treatment of chronic lead intoxication.  相似文献   

13.
Cadmium induced lipid peroxidation (LPO) and the activity of antioxidantenzymes after the administration of a single dose of CdCl 2 (0.4 mg kg body wt, ip) was studied in rat erythrocytes.Cd intoxication increased erythrocyte LPO along with a decrease insuperoxide dismutase (SOD) up to three days of Cd treatment. Thedecrease in erythrocyte catalase (CAT) activity was marked within9 h of Cd intoxication. After three days of Cd treatment, LPOdecreased towards normal, along with an increase in erythrocyteSOC and CAT activity. Blood glutathione (GSH) decreased significantlywithin 24 h of Cd treatment, followed by an increase towards normal.Erythrocyte glutathione S-transferase (GST) activity increased up to10 days of Cd intoxication, probably in an attempt to reduce Cd toxicity.Serum glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase(SALP) and serum bilirubin increased up to 10 days of Cd intoxication.Blood urea increased significantly up to three days, followed by a decreasetowards normal. The results show that Cd induced LPO was associated with adecrease in antioxidant enzymes and GSH in erythrocytes; as these antioxidantsincrease in erythrocytes with recovery from Cd intoxication, the Cd inducedLPO reversed towards normal. The increase in the SGPT, SALP and serum bilirubincorrelated with LPO. The results suggest that Cd intoxication induces oxidativestress and alters the antioxidant system, resulting in oxidative damage torat erythrocytes. © Rapid Science 1998  相似文献   

14.
The hepatoprotective and antioxidant effect of Cassia fistula Linn. leaf extract on liver injury induced by diethylnitrosamine (DEN) was investigated. Wistar rats weighing 200+/-10g were administered a single dose of DEN (200mg/kg b.w., i.p.) and left for 30 days. For hepatoprotective studies, ethanolic leaf extract (ELE) of C. fistula Linn. (500mg/kg b.w., p.o.) was administered daily for 30 days. AST, ALT, ALP, LDH, gamma-GT and bilirubin were estimated in serum and liver tissue. Lipid peroxidation (LPO), SOD and CAT were also estimated in liver tissue as markers of oxidative stress. DEN induced hepatotoxicity in all the treated animals were evident by elevated serum ALT, AST, ALP and bilirubin levels and a simultaneous fall in their levels in the liver tissue after 30 days. Induction of oxidative stress in the liver was evidenced by increased LPO and fall in the activities of SOD and CAT. ELE administration for 30 days prevented the DEN induced hepatic injury and oxidative stress. In conclusion, it was observed that ELE of C. fistula Linn. protects the liver against DEN induced hepatic injury in rats.  相似文献   

15.
Monosodium glutamate (MSG), administered to rats (by gavage) at a dose of 0.6 mg/g body weight for 10 days, significantly (P<0.05) induced lipid peroxidation (LPO), decreased reduced glutathione (GSH) level and increased the activities of glutathione-s-transferase (GST), catalase and superoxide dismutase (SOD) in the liver of the animals; these were observed 24 hr after 10 days of administration. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were also significantly increased in the serum, on MSG administration. Vitamin E (0.2 mg/g body wt) co-administered with MSG, significantly reduced the LPO, increased the GSH level and decreased the hepatic activities of GST, catalase and SOD. The activities of ALT, AST and GGT in the serum were also significantly reduced. The results showed that MSG at a dose of 0.6 mg/g body wt induced the oxidative stress and hepatotoxicity in rats and vitamin E ameliorated MSG-induced oxidative stress and hepatotoxicity.  相似文献   

16.
The association between oxidative stress and cardiovascular diseases is a widely accepted fact today. Generally, men have a higher risk of cardiovascular incidents and mortality from acute myocardial infarction and strokes. We have examined sport-associated circannual rhythms of oxidant and antioxidant processes by measuring plasma LPO, erythrocyte SOD, CAT, Gpx activity and plasma hormonal status in both sedentary and long-term trained men and women. We have shown seasonal variations in both oxidant and antioxidant status in all examined groups. The largest difference was observed in the oxidant status between sedentary men and women during autumn and winter, which is considered a period of high coronary risk for men. Sport decreased LPO in trained men in autumn, while the same effect in trained women was shifted towards summer. These data state that regular, long-term physical exercise training induces adaptive responses that confer protection against oxidative stress, as well as the beneficial effect of exercise with regard to season, particularly in men during a period of high coronary risk (autumn and winter, respectively) and in women during summer.  相似文献   

17.
The present study aimed to test starvation-induced oxidative stress in the cinnamon clownfish Amphiprion melanopus illuminated by light-emitting diodes (LEDs): red (peak at 630nm), green (peak at 530nm), and blue (peak at 450nm) within a visible light. We investigated the oxidative stress induced by starvation for 12days during illumination with 3 LED light spectra through measuring antioxidant enzyme (superoxide dismutase [SOD] and catalase [CAT]) mRNA expression and activity; CAT western blotting; and measuring lipid peroxidation [LPO]), plasma H(2)O(2), lysozyme, glucose, alanine aminotransferase (AlaAT), aspartate aminotransferase (AspAT), and melatonin levels. In green and blue lights, expression and activity of antioxidant enzyme mRNA were significantly lower than those of other light spectra, results that are in agreement with CAT protein expression level by western blot analysis. Also, in green and blue lights, plasma H(2)O(2), lysozyme, glucose, AlaAT, AspAT, and melatonin levels were significantly lower than those in other light spectra. These results indicate that green and blue LEDs inhibit oxidative stress and enhance immune function in starved cinnamon clownfish.  相似文献   

18.
The antiulcerogenic effect of diffractaic acid (DA) isolated from Usnea longissima, a lichen species, on indomethacin (IND)-induced gastric lesions was investigated in rats. Administration of 25, 50, 100 and 200 mg/kg doses of DA and ranitidine (RAN) (50 mg/kg dose) reduced the gastric lesions by 43.5%, 52.9%, 91.4%, 96.7% and 72.7%, respectively. It is known that oxidative stress leads to tissue injury in organisms. Thus, in all treated groups of rats, the in vivo activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were evaluated. IND caused oxidative stress, which resulted in LPO in tissues, by decreasing the levels of GPx, SOD and GSH as compared to healthy rats. In contrast to IND, the administration of DA and RAN showed a significant decrease in LPO level and an increase in tissue SOD, GPx and GSH levels. However, while CAT activity was significantly increased by the administration of IND, the administration of DA and RAN decreased CAT activity. The administration of IND also increased the myeloperoxidase (MPx) activity, which shows neutrophil infiltration into the gastric mucosal tissues. In contrast to IND, the administration of DA and RAN decreased MPx activity. The changes in activities of gastric mucosal nitric oxide synthases (NOS) throughout the development of gastric mucosal damage induced by IND were also studied. A decrease in constitutive NOS (cNOS) activity and an increase in inducible NOS (iNOS) activity were determined in gastric damaged tissues induced by IND. The administration of DA (100 mg/kg dose) and RAN reversed the activities of iNOS and cNOS. These results suggest that the gastroprotective effect of DA can be attributed to its enhancing effects on antioxidant defense systems as well as reducing effects of neutrophil infiltration.  相似文献   

19.
The interaction of exercise training and ethanol on the myocardial antioxidant enzymes and the oxidative stress markers was investigated in the Wistar strain male albino rats. We also tested the interactive effects of exercise training and ethanol on the age-associated free radical production and antioxidant defense system. We found a significant decrease (p<0.05) in the activity levels of superoxide dismutase (SOD) and catalase (CAT) in the myocardium of old rats when compared to young rats by 26% and 58%, respectively, suggesting the onset of age-dependent decrease in the myocardial antioxidant enzyme system. In contrast to the decreased antioxidant enzyme activity, xanthine oxidase (XOD) and lipid peroxidation (LPO) levels were elevated, suggesting the age-induced oxidative stress. Exercise training significantly (p < 0.05) elevated the activities of SOD, CAT, XOD and LPO levels in both the age groups of animals. Ethanol consumption significantly lowered the SOD and CAT activities in both the age groups, whereas a significant increase was observed in the XOD and LPO levels. In contrast, the combination of exercise training plus ethanol lowered XOD and LPO levels in both the age groups of rats compared to ethanol treated rats. A significant (p < 0.05) increase in the activities of SOD and CAT was reported in the rats treated with the combination of exercise training plus ethanol. This increase was more pronounced in the younger rats than the older rats. The findings of the present investigation on the potential role of antioxidant enzymes to counter the ethanol-induced pro-oxidants showed an increase with the interaction of exercise training. With age, a decrease in the antioxidant enzyme capacity was observed. This reveals that the old age rats were more affected to the pro-oxidants when compared to the young age rats. In conclusion it is demonstrated that two months treadmill endurance exercise training is beneficial to both young and old rats in improving antioxidant defense to challenge the oxidative stress in the myocardial tissue and thereby successfully countering the free radical production due to ethanol intoxication.  相似文献   

20.
The oxidative stress is considered to be involved in the pathophysiology of cancers. In the current study we explored the oxidative stress in patients with different cancers and corresponding benign diseases by evaluation of the level of lipid peroxidation products (MDA level) in the plasma and the activity of erythrocyte antioxidant defense enzymes superoxide dismutase (SOD) and catalase (CAT). Significantly higher plasma levels of lipid peroxidation products were detected in patients with early and advanced cancers in comparison to the healthy volunteers (mean 3.1 micromol/l and 2.3 micromol/l, p = 0.0003 and p = 0.029, respectively, t-test). In addition, 10-20 days after radical operations of cancer patients with normal postoperative recovery period, the plasma levels of MDA decreased and reached values close to the controls (mean 2.0 micromol/l). SOD in erythrocytes of patients with benign diseases and malignant solid tumors before and after surgery did not differ from that of the controls. In contrast, CAT activity of patients with early cancers was found to be significant higher than that of the controls (mean 22157.2 U/gHb vs. 12832.0 U/gHb, p = 0.032, t-test). A decrease of CAT activity was observed after surgery (mean 15225.0 U/gHb). In conclusion, our results suggest the presence of an increased oxidative stress accompanied by a lack of changes of erythrocyte SOD activity and an adaptive increase of CAT activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号