首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effect of purinoceptor agonists on phosphatidylcholine secretion in primary cultures of type II pneumocytes from adult rats. Surfactant is a major product of the type II cell and phosphatidylcholine is its principal component. Adenosine, AMP, ADP and ATP stimulated phosphatidylcholine secretion in a concentration-dependent manner. At the optimum concentration (1 mM), adenosine and AMP stimulated phosphatidylcholine secretion more than 2-fold, while ATP stimulated 5-fold and ADP almost 7-fold. Because of the magnitude of the response it is tempting to speculate that secretion of surfactant may be under purinoceptor regulation. None of these agents influenced cellular phosphatidylcholine synthesis or lactate dehydrogenase release into the medium, so the effects were primarily on secretion and were not secondary to effects on synthesis or cell damage. Non-metabolizable analogs of adenosine, 5'-N-ethyl-carboxyamidoadensoine (NECA) and L-N6-phenylisopropyladenosine (L-PIA), stimulated secretion to the same extent as adenosine and the effect of NECA was antagonized by 8-phenyltheophylline, suggesting a P1 purinoceptor-mediated mechanism. The stimulatory effect of ATP was diminished by alpha, beta-methylene ATP but only slightly by 8-phenyltheophylline, suggesting that, although part of the ATP effect could be explained by catabolism to adenosine, the P2 purinoceptor may also be involved in regulation of surfactant secretion.  相似文献   

2.
We previously reported that arachidonic acid stimulates secretion of phosphatidylcholine in cultures of type II pneumocytes and, based on studies with cyclooxygenase and lipoxygenase inhibitors, suggested that this effect was mediated by lipoxygenase products of arachidonic acid metabolism (Gilfillan, A.M. and Rooney, S.A. (1985) Biochim. Biophys. Acta 833, 336-341). We have now examined the effect of leukotrienes on phosphatidylcholine secretion in type II cells as well as the effect of a leukotriene antagonist, FPL55712, on the stimulatory effect of arachidonic acid. Leukotrienes C4, D4 and E4 stimulated phosphatidylcholine secretion and this effect was dependent on concentration in the range 10(-12)-10(-6) M. Leukotriene E4 was the most stimulatory, followed by D4 and C4. Leukotriene B4 had no effect. Incubation of the cells with 10(-7) M leukotriene E4 for 90 min resulted in a 107% increase in the rate of phosphatidylcholine secretion. Incubation with 10(-6) M leukotrienes D4 and C4 for the same period resulted in 81% and 63% stimulation, respectively. The leukotrienes had no effect on cellular phosphatidylcholine synthesis or on lactate dehydrogenase release. The stimulatory effects of leukotrienes E4 and D4 were abolished by FPL55712. Similarly, the stimulatory effect of 6 X 10(-6) M arachidonic acid on phosphatidylcholine secretion was reduced from 74% to 25% by 10(-5) M FPL55712. Thus, the stimulatory effect of arachidonic acid on surfactant phospholipid secretion in type II cells is mediated at least in part by leukotrienes.  相似文献   

3.
This study was designed to investigate the effect of platelet-activating factor (PAF) in the secretory response of type II pneumocytes, that are involved in the synthesis and secretion of the pulmonary surfactant. PAF increased phosphatidylcholine secretion in a concentration-dependent manner in the 10(-5) - 10(-10) M range, with a maximum phosphatidylcholine secretion of up to 3.3 fold the basal values (3.4 +/- 0.3% phosphatidylcholine secreted). This effect was prevented by the synthetic PAF-receptor antagonist WEB 2086. A study of the mechanism through which PAF exerts its stimulatory effect was carried out adding different agents that are well known stimulants of phosphatidylcholine secretion. Thus, PAF increased the TPA- and terbutaline-stimulated phosphatidylcholine secretion, that are PKC and PKA activators respectively, suggesting the involvement of both protein kinases in the process. This involvement was further supported by the use of inhibitors of protein kinases and by the stimulation of cAMP production in type II pneumocytes incubated with PAF.  相似文献   

4.
The purpose of this study was to evaluate the mechanism by which Escherichia coli lipopolysaccharide stimulates the secretion of phosphatidylcholine in primary cultures of rat type II pneumocytes. The stimulatory effect of lipopolysaccharide on phosphatidylcholine secretion was additive to those of terbutaline and TPA (protein kinase A and C activators respectively) and this effect was not suppressed by inhibitors of both protein kinases. On the other hand, lipopolysaccharide did not modify the increase on phosphatidylcholine secretion induced by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, and enhanced slightly the calcium-ionophore A23187 stimulated phosphatidylcholine secretion. In addition, the stimulatory effect of lipopolysaccharide was suppressed by BAPTA, an intracellular Ca2+ chelator, and KN-62, a specific inhibitor of Ca2+-calmodulin-dependent protein kinase. These results, together with the lipopolysaccharide-mediated increase in the cytosolic [Ca2+], suggest that stimulation of phosphatidylcholine secretion by lipopolysaccharide in type II pneumocytes occurs by a calcium-dependent transduction mechanism via Ca2+-calmodulin-dependent protein kinase activation.  相似文献   

5.
The current study examined the effect of vasopressin on the secretion of phosphatidylcholine, the principal component of pulmonary surfactant, from adult rat alveolar type II pneumocytes in primary culture. Vasopressin stimulated secretion in a time- and dose-dependent manner. At a concentration of 10 nM, vasopressin stimulated release by 6-fold over the basal secretory rate. The concentration producing half the maximal response for vasopressin-induced secretion was 0.4 nM. The stimulation of phosphatidylcholine release by vasopressin was duplicated by the vasopressin fragment, amino acids 4 through 9. [Lys8]vasopressin and the selective vasopressin-2 agonist [deamino-8-D-Arg]vasopressin did not stimulate surfactant secretion effectively. The vasopressin- and fragment-induced secretion was inhibited by the vasopressin-1 receptor antagonist d(CH2)5TDAVP and the protein kinase C inhibitor, tetracaine, but not by the beta-adrenergic antagonist alprenolol. Vasopressin did not activate adenylate cyclase, which suggests that stimulation by vasopressin was independent of cyclic AMP. When vasopressin and isoproterenol were added concomitantly, the effects on phosphatidylcholine secretion were additive. This suggests that these two secretagogues operate via separate mechanisms.  相似文献   

6.
Inhaled nitric oxide (NO) is a selective pulmonary vasodilator effective in treating persistent pulmonary hypertension in newborns and in infants following congenital heart disease surgery. Recently, multiple in vivo and in vitro studies have shown a negative effect of NO on surfactant activity as well as surfactant protein gene expression. Although the relationship between NO and surfactant has been studied previously, the data has been hard to interpret due to the model systems used. The objective of the current study was to characterize the effect of NO on surfactant protein gene expression in primary rat type II pneumocytes cultured on a substratum that promoted the maintenance of type II cell phenotype. Exposure to a NO donor, S-nitroso-N-acetylpenicillamine (SNAP), decreased surfactant protein (SP)-A, (SP)-B, and (SP)-C mRNA levels in type II pneumocytes in a time- and dose-dependent manner. The effect was mediated in part by an increase in endothelin-1 secretion and a decrease in the intracellular messenger, phosphorylated ERK1/2 mitogen-activated protein kinases (MAPK). Exposing type II pneumocytes to endothelin-1 receptor antagonists PD-156707 or bosentan before exposure to SNAP partially prevented the decrease in surfactant protein gene expression. The results showed that NO mediated the decrease in surfactant protein gene expression at least in part through an increase in endothelin-1 secretion and a decrease in phosphorylated ERK1/2 MAPKs.  相似文献   

7.
Phosphatidylcholine synthesis in type II pneumocytes is stimulated by inclusion of phosphatidylglycerol and other phospholipids in the culture medium (Gilfillan, A.M., Chu, A.J. and Rooney, S.A. (1984) Biochim. Biophys. Acta 794, 269-273). We have now examined the effect of phosphatidylglycerol in the medium on enzymes of de novo phosphatidylcholine synthesis in adult rat type II cells. Activities of choline kinase, cholinephosphate cytidylyltransferase and cholinephosphotransferase in homogenates of whole lung and type II cells were generally similar. Phosphatidate phosphatase activity in type II cells, however, was only 16% that in whole lung. Addition of phosphatidylglycerol (10 microM) to the culture medium had no effect on choline kinase, cholinephosphotransferase or phosphatidate phosphatase activities in type II cells but it increased the activity of cholinephosphate cytidylyltransferase by 56%. Since it is known that cholinephosphate cytidylyltransferase is stimulated in vitro by addition of phospholipids to the assay mixture, we also measured its activity in the presence of sufficient phosphatidylglycerol (1.1 mM) to maximally stimulate in vitro. Even under these conditions cholinephosphate cytidylyltransferase activity in type II cells cultured in the presence of phosphatidylglycerol was 32% greater than in control cells. These data show that the stimulatory effect of phospholipid in the culture medium on phosphatidylcholine synthesis in type II cells is mediated by increased cholinephosphate cytidylyltransferase activity. The mechanism of increased cytidylyltransferase activity remains to be elucidated but it is not due to direct in vitro activation by the phospholipid.  相似文献   

8.
Retinoic acid (RA) is important for maintaining integrity of alveolar epithelial cells, but the mechanism has not been defined. We cultured type II pneumocytes at confluent, high cell density (104 cells/mm2) and found that RA (10−6 M) inhibited thymidine incorporation to 60% of control, despite a dose-dependent increase in epidermal growth factor receptor (EGFR) levels. However, at lower, subconfluent density (102 cells/mm2), RA stimulated thymidine incorporation to 280% of control. EGF increased thymidine incorporation at concentrations as low as 0.1 ng/mL, but no further increase was observed at higher concentrations up to 100 ng/mL. In subconfluent cells co-treated with EGF (100 ng/mL) and increasing concentrations of RA (10−8 M–10−5 M RA), thymidine incorporation was significantly greater at all concentrations than RA alone, with greatest increases observed at 10−7 (422% of control) and 10−6 (470% of control) M RA. In summary, the effects of RA on thymidine incorporation are sensitive to changes in cell density. RA inhibits thymidine incorporation at high cell density and stimulates thymidine incorporation at low density. RA increases EGFRs in cultured type II pneumocytes, and EGF stimulates thymidine incorporation independent of the cultured cell density. These data may help to explain how RA mediates lung repair in vivo.  相似文献   

9.
After 24 h exposure to 0.1 mM oleate or 0.1 mM palmitate there was a 2- and 1.7-fold increase, respectively, in the incorporation of choline into the lipids of type II pneumocytes. Palmitate increased the labeling of disaturated phosphatidylcholine (PC) from 23.0% of total labeled PC in control cultures to 56.6% and oleate decreased labeling of disaturated PC to 9.4%. The percentage of total cellular radioactivity found in the lipid fraction was also markedly higher in the fatty acid-treated cells (83.3% for oleate and 78.7% for palmitate) than in control cultures (64.0%). Radioactivity in water-soluble choline metabolites was correspondingly lower, with phosphocholine representing more than 95% of the label in both control and experimental cultures. After a 3 h pulse-chase period, oleate and palmitate significantly increased the percentage of total cellular radioactivity in PC and decreased the percentage in phosphocholine. Similar results were obtained by adding melittin (1–2 μg/ml) or phospholipase C (0.05 U/ml) to the culture medium. The stimulation of PC synthesis by fatty acids was demonstrated as early as 1 h after exposure to oleate or palmitate and at all concentrations from 0.025 to 0.25 mM. Cytidylyltransferase activity in total cell homogenates was also enhanced by long-term exposure to fatty acids and short-term addition of fatty acids or phospholipase C and melittin to the culture medium. A similar increase in Cytidylyltransferase activity was found in the 100 000 × g particulate fraction of type II cells exposed to fatty acids, whereas no differences were found between the cytosolic fractions of control and treated cells. These results support the concept that an increase in intracellular level of fatty acids either from an exogenous source or following the activation of endogenous phospholipases regulates PC synthesis in fetal type II pneumocytes.  相似文献   

10.
Surfactant sufficiency is dependent upon adequate synthesis and secretion of surfactant by the type II alveolar epithelium. Our laboratory has previously shown that basal secretion of surfactant phospholipid by differentiated fetal type II cells is lower than the basal secretion by adult cells. The purposes of this study were to determine if undifferentiated fetal type II cells can secrete phosphatidylcholine, to determine if terbutaline, a β-adrenergic agonist, stimulates secretion of surfactant phospholipids by undifferentiated fetal cells and to examine the effects of differentiation on secretion of surfactant phospholipids by fetal cells. Constitutive (basal) secretion of phosphatidylcholine increased linearly as a function of time in both undifferentiated and differentiated cells, but the rate of secretion was greater in differentiated cells than the rate of secretion in undifferentiated cells. Terbutaline caused a concentration-dependent increase in secretion in both undifferentiated and differentiated cells. Maximal effective concentration and EC50 were similar for undifferentiated (10−6 M, 0.2 μM) and differentiated (10−5 M, 0.3 μM) cells. The relative stimulation of secretion above control values was greater for undifferentiated cells. The kinetics of terbutaline stimulation varied significantly with cellular differentiation. Terbutaline resulted in 230% stimulation of secretion in undifferentiated cells at 30 min followed by a decline in the response to terbutaline at 60 to 120 min. In contrast, terbutaline stimulated secretion by differentiated cells showed a sustained linear increase from 0 to 120 min. This regulation of stimulated secretion is not present in undifferentiated cells. We conclude that undifferentiated type II cells are capable of the secretion of phosphatidylcholine and that terbutaline stimulates secretion by undifferentiated cells. Furthermore, basal secretion increases as a function of differentiation of type II cells and the regulation of stimulated secretion seen in differentiated cells is not developed in undifferentiated cells. The developmental regulation of the secretion of surfactant is complex and probably involves both excitatory as well as inhibitory mechanisms which develop at different stages of differentiation of the type II cell.  相似文献   

11.
To study the effect of diabetes on pulmonary surfactant secretion, type II pneumocytes from adult streptozotocin-induced diabetic rats were placed in short-term culture. As opposed to a linear secretory rate by control type II cells, the secretory rate of type II cells from diabetic animals was biphasic reaching a minimum at 1.5 h. When exogenous surfactant containing radioactive phosphatidylcholine was added to the incubation media for 1.5 h, the cells from diabetic animals incorporated more exogenous phosphatidylcholine into lamellar bodies than control cells. This suggests that in the type II cell from diabetic animals, the rate of reutilization is greater than the rate of secretion until 1.5 h, at which time the rate of secretion becomes greater. The altered secretory pattern was reversed by in vivo insulin treatment 30 min prior to killing but not by the addition of insulin to the incubation media. When challenged by isoproterenol, a beta-adrenergic agonist, the secretory pattern of cells from diabetic animals was biphasic as observed with basal secretion; however, secretion was stimulated 30% as opposed to 100% increase in control cells. These data suggest that basal and stimulated secretion are altered in the cultured type II cell from diabetic animals and restored by in vivo but not in vitro insulin treatment.  相似文献   

12.
13.
We studied the effects of arachidonic acid (AA) on Cl secretion across primary cultures of dog tracheal epithelium. Cell sheets showed mean values for baseline short-circuit current (Isc) and transepithelial resistance of 33.8 muA/cm2 and 360 omega.cm2 (n = 44). AA (5 x 10(-5) M) added to both sides increased Isc by 27.8 +/- 5.2 muA/cm2 (mean +/- SE, n = 8), and elevated intracellular cAMP levels. In the presence of 5 x 10(-6) M of both indomethacin (INDO) and nordihydroguaiaretic acid (NDGA) (inhibitors of cyclooxygenase and lipoxygenase, respectively), AA reduced Isc by 4.4 +/- 0.6 muA/cm2 (n = 10) without changing cAMP. Both INDO and NDGA were necessary to abolish the Isc increase in response to AA. The effects of AA on Isc were unaffected by amiloride. In the presence of INDO and NDGA, isoproterenol (ISO) raised cAMP and increased Isc by 27.6 +/- 4.3 (transient) and 12.8 +/- 3.2 muA/cm2 (sustained) (n = 9). With AA present as well as INDO and NDGA, the transient and sustained responses to ISO were significantly reduced to 13.2 +/- 2.4 and 3.9 +/- 0.8 muA/cm2 (n = 10), respectively; the increase in cAMP was unaltered. AA approximately halved baseline efflux of 125I from confluent cell sheets in high K medium and reduced the isoproterenol-induced increase in efflux to 20% of control. These data are consistent with the reported inhibitory effect of AA on apical membrane chloride channels.  相似文献   

14.
15.
Proteins from primary cultures of type II granular pneumocytes have been examined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis to identify type II cell-specific proteins. The distribution of Coomassie Blue-stained bands in preparations of cellular proteins, culture medium, lavage and lamellar bodies have been compared. The most prominent stained band in the serum-free medium from type II cell cultures (HS1; Mr 39900) corresponds to a major protein in acellular sedimentable (20000 g for 30 min) crude surfactant obtained from rat lungs by saline (0.9% NaCl) lavage. A second protein (HS2; Mr 12000) is also found both in type II cell-conditioned medium and in lavage. Neither rat serum nor donor calf serum (used in the isolation of the type II cells) contains a protein co-migrating with HS1 or HS2 proteins. HS1 is also found in Coomassie Blue-stained gels of cellular proteins and of lamellar bodies isolated from whole lungs. Cultures of type II cells incorporate [14C]phenylalanine into HS1 and HS2 as shown by autoradiography of sodium dodecyl sulphate/polyacrylamide gels of culture medium. Rat lungs perfused in situ incorporate [35S]methionine into HS1 in the lamellar body fraction. A third protein (HS3; Mr 47000) is observed only in autoradiographs of cell culture medium; no corresponding Coomassie Blue-stained band can be identified in medium, in cells or in lung lavage. No protein bands corresponding to HS1, HS2 or HS3 are found in conditioned media from pulmonary alveolar macrophages, rat fibroblasts or bovine aorta endothelial cells. Two-dimensional gel electrophoresis of HS1 shows a single polypeptide with an isoelectric point of 6.3; HS3 appears as a chain of spots with a range of isoelectric points from 6.3 to 6.6. HS2 has not been identified on two-dimensional gels. The amino acid composition of HS1 does not differ significantly from that of surfactant apoproteins studied previously; however, HS1 is not detected by glycoprotein stains, nor does it appear to be a subunit of a thiol-linked multimer.  相似文献   

16.
Type II pneumocytes are responsible for the synthesis and secretion of pulmonary surfactant, which reduces surface tension in lung alveoli, thus decreasing their tendency to collapse during expiration. For this effect to be sustained, the integrity of the surface-active components of surfactant must be maintained. This study has shown that, when cultured type II pneumocytes are exposed to lipoprotein-free serum (LFS), the level of lyso-phosphatidylcholine (lyso-PC) in the secreted surfactant phospholipids is markedly elevated with a concomitant decline in the level of phosphatidylcholine (PC). This effect is the result of hydrolysis of surfactant PC by a phospholipase A(2) (PLA(2))-like activity present within serum. Anion-exchange chromatography, gel filtration chromatography and preparative electrophoresis of human LFS have shown that this PLA(2)-like activity coelutes with albumin and is biochemically distinct from the secretory form of PLA(2). Furthermore, specific inhibitors of PLA(2) such as p-bromophenacyl bromide, aristolochic acid, and palmitoyl trifluoromethyl ketone do not inhibit this activity of serum. Commercially purified human serum albumin fraction V and recombinant human serum albumin (rHSA) are almost as effective as LFS in enhancing the level of lyso-PC in the media. The latter finding implies that rHSA directly generates lyso-PC from secreted PC and suggests that this PLA(2)-like activity may be an intrinsic attribute of albumin.  相似文献   

17.
Y Oda  H Kai  Y Isohama  K Takahama  T Miyata 《Life sciences》1991,49(11):803-811
The influence of activating neutrophils on the secretion of phosphatidylcholine (PC), the predominant component of pulmonary surfactant, was examined using primary culture of rat type II pneumocytes. Simultaneous addition of neutrophils and opsonized zymosan, but not neutrophils or opsonized zymosan alone, to type II pneumocytes caused a significant increase in PC secretion without affecting the release of lactate dehydrogenase, a marker of cytotoxicity. The increase in PC secretion was dependent on the number of activating neutrophils. In addition, pretreatment of culture with the combination of superoxide dismutase and catalase inhibited the increase in PC secretion. These findings indicate that activating neutrophils stimulate the secretion of pulmonary surfactant and that the stimulation is mediated by oxygen radicals.  相似文献   

18.
Surfactant from type II pneumocytes prevents the alveolar atelectasis found in both the neonatal and adult forms of respiratory distress syndrome. We have found that verapamil, a phenylalkene with calcium channel and alpha 1-receptor binding properties, has a multiphasic concentration effect on surfactant secretion from [3H]choline-labeled rat type II pneumocytes in culture. Verapamil (10(-8) M) caused a 24% stimulation of surfactant secretion, whereas an 8% inhibition was found at 10(-6) M and a 70% stimulation was found at 10(-4) M. Lactate dehydrogenase release occurred at 5 x 10(-4) M verapamil. Verapamil (10(-4) M) also produced a 100% increase in adenosine 3',5'-cyclic monophosphate (cAMP) in comparison with concentrations of less than or equal to 10(-6) M, an effect that could not be blocked by propranolol (10(-4) M). Verapamil (10(-6) M) increased the total formation of inositol phosphates (IP) by 23% in comparison with IP formation in control cells. Calcium influx was inhibited 15% by 10(-8) M verapamil and 37% by 10(-4) M verapamil. Calcium efflux was stimulated 44% by 10(-5) M verapamil. In combination with 50% effective concentrations (EC50) of terbutaline, phorbol ester, and ATP, the respective effects of verapamil (10(-4) M) on surfactant secretion were approximately additive. We conclude that verapamil has a novel multiphasic concentration effect on surfactant secretion, which appears to involve several signal transduction pathways including cAMP formation, IP formation, inhibition of calcium influx, and stimulation of calcium efflux.  相似文献   

19.
Production of prostaglandin E2 (PGE2), F2 alpha (PGF2 alpha) and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) by pregnant rat uterus were measured in vitro. At mid-pregnancy, myometrium incubated with decidua attached released more prostanoids into the culture medium than when incubated without. As pregnancy progressed to 21 days more prostanoids were detected in the culture medium. However, no significantly increased conversion of exogenous arachidonic acid (AA) by myometrium was found.  相似文献   

20.
The phosphatidylcholine content of both the intestinal and renal brush-border membranes and ion transport are affected by 1,25-dihydroxycholecalciferol (1,25(OH)2D3). To investigate the mechanism of this effect, liposomes were prepared containing self-quenching concentrations of fluorescent phospholipid derivatives. When these liposomes were incubated with rat renal brush-border membrane vesicles, an immediate increase in the relative fluorescence of N-4-nitrobenz-2-oxa-1,3-diazole phosphatidylcholine (NBD-PC) was detected, indicating transfer of NBD-PC into a non-quenched membrane. Addition of 1,25(OH)2D3 to the liposomes produced a dose-dependent stimulation of NBD-PC transfer to the acceptor brush-border membrane vesicles. Peripheral fluorescence was visible when the brush-border membrane vesicles were viewed with a fluorescent microscope. Using brush-border membrane vesicles from kidneys of vitamin D-deficient animals, quantitation of lipid transfer revealed a 1,25(OH)2D3 (10(-7) M) stimulation of NBD-PC transfer from 1.38 +/- 0.27 to 2.07 +/- 0.26 micrograms/h, and of PC transfer, assessed by vesicle phosphatidylcholine content, from 49.7 +/- 12 to 57.3 +/- 12 micrograms/mg protein per h (P less than 0.05). There was no significant transfer of N-(lissamine rhodamine B sulfonyl)dioleoylphosphatidylethanolamine (N-Rh-PE). In the absence of hormone, the amount of NBD-PC transferred to brush-border membrane vesicles prepared from normal rats was significantly greater than that transferred to brush-border membrane vesicles prepared from vitamin D-deficient animals (2.12 +/- 0.02 vs. 1.39 +/- 0.27 micrograms of NBD-PC/h, P less than 0.05). Both physiologic and pharmacologic concentrations of 1,25(OH)2D3 stimulated NBD-PC transfer with maximum response at 10(-14) M (2.98 +/- 0.15 micrograms/h). 24,25-Dihydroxycholecalciferol and 25-hydroxycholecalciferol (25(OH)D3) also stimulated transfer, although dose-response curves were less effective than for 1,25(OH)2D3. Cortisol and vitamin D-3 did not stimulate transfer. 1,25(OH)2D3 did not stimulate NBD-PC transfer between liposome populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号