首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secretory membrane activities of two rat prostate cancer cell lines of markedly different metastatic potential, and corresponding electrophysiological characteristics, were studied in a comparative approach. In particular, voltage-gated Na(+) channels (VGSCs) were expressed in the strongly metastatic MAT-LyLu but not in the closely related, but weakly metastatic, AT-2 cells. Uptake and release of the non-cytotoxic marker horseradish peroxidase (HRP) were used as indices of general endocytotic and exocytotic membrane activity, respectively. The amount of tracer present in a given experimental condition was quantified by light microscopic digital imaging. The uptake of HRP was an active process, abolished completely by incubating the cells at low temperature (5 degrees C) and suppressed by disrupting the cytoskeleton. Interestingly, the extent of HRP uptake into the strongly metastatic MAT-LyLu cells was almost twice that into the weakly metastatic AT-2 cells. Vesicular uptake of HRP occurred in a fast followed by a slow phase; these appeared to correspond to cytoplasmic and perinuclear pools, respectively. Importantly, the overall quantitative difference in the uptake disappeared in the presence of 1 microM tetrodotoxin which significantly reduced the uptake of HRP into the MAT-LyLu cells. There was no effect on the AT-2 cells, consistent with functional VGSC expression occurring selectively in the former. A similar effect was observed in Na(+)-free medium. The uptake was partially dependent upon extracellular Ca(2+) but was not affected by raising the extracellular K(+) concentration. We suggest that functional VGSC expression could potentiate prostate cancer cells' metastatic ability by enhancing their secretory membrane activity.  相似文献   

2.
The main aim of this investigation was to determine whether a functional relationship existed between epidermal growth factor (EGF) and voltage-gated sodium channel (VGSC) upregulation, both associated with strongly metastatic prostate cancer cells. Incubation with EGF for 24 h more than doubled VGSC current density. Similar treatment with EGF significantly and dose-dependently enhanced the cells' migration through Transwell filters. Both the patch clamp recordings and the migration assay suggested that endogenous EGF played a similar role. Importantly, co-application of EGF and tetrodotoxin, a highly selective VGSC blocker, abolished 65% of the potentiating effect of EGF. It is suggested that a significant portion of the EGF-induced enhancement of migration occurred via VGSC activity.  相似文献   

3.
Voltage-gated Na+ channels, classically associated with impulse conduction in excitable tissues, are also found in a variety of epithelial cell types where their possible functions are not known so well. We have previously reported expression of a voltage-gated Na+ channel specifically in the highly metastatic Mat-LyLu rat prostate cancer cell line; blockage of the current with tetrodotoxin (TTX) significantly reduced the invasiveness of the cells in vitro, suggesting that the channel may have a functional role in metastasis. The aim of the present study was to characterize this current using the whole-cell patch clamp recording technique, and compare it to Na+ currents found in various other tissues. The inward current of the Mat-LyLu cells was abolished completely, but reversibly, in Na+-free solution, confirming that Na+ was indeed the permeant ion. Activation occurred at −40 mV and currents reached a maximal amplitude at around 6 mV. Boltzmann fits to current activation and steady-state inactivation revealed that the currents were half activated at about −15 mV and half inactivated at −80 mV. Both current inactivation and recovery from inactivation followed a double-exponential time course with fast and slow components. The Na+ currents were highly sensitive to block by TTX (IC50 ≃ 18 nM), whilst 1 μM μ-conotoxin GIIIA mostly had no effect. 100 μM Cd2+ also had no effect on the current, whilst 2.5 mM Cd2+, Mn2+, and Co2+ each caused a depolarizing shift in activation and a reduction in peak conductance of around 20%. In conclusion, the Na+ channel expressed in the highly metastatic Mat-LyLu cell line appeared to have electrophysiological and pharmacological properties of TTX-sensitive channels. Further work is needed, however, to elucidate the exact nature of the channel protein and the mechanism(s) of its involvement in cellular invasiveness. J. Cell. Physiol. 175:50–58, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The highly dynamic nature of voltage-gated Na+ channel (VGSC) expression and its controlling mechanism(s) are not well understood. In this study, we investigated the possible involvement of nerve growth factor (NGF) in regulating VGSC activity in the strongly metastatic Mat-LyLu cell model of rat prostate cancer (PCa). NGF increased peak VGSC current density in a time- and dose-dependent manner. NGF also shifted voltage to peak and the half-activation voltage to more positive potentials, and produced currents with faster kinetics of activation; sensitivity to the VGSC blocker tetrodotoxin (TTX) was not affected. The NGF-induced increase in peak VGSC current density was suppressed by both the pan-trk antagonist K252a, and the protein kinase A (PKA) inhibitor KT5720. NGF did not affect the Nav1.7 mRNA level, but the total VGSC alpha-subunit protein level was upregulated. NGF potentiated the cells' migration in Transwell assays, and this was not affected by TTX. We concluded that NGF upregulated functional VGSC expression in Mat-LyLu cells, with PKA as a signaling intermediate, but enhancement of migration by NGF was independent of VGSC activity.  相似文献   

5.
6.
We describe the expression of functional Na+ channels in Xenopus oocytes injected with cRNA transcribed from the rat heart I cDNA clone. The expressed rat heart I Na+ currents show kinetic properties and resistance to tetrodotoxin and saxitoxin which are characteristic of native cardiac Na+ currents. The primary amino acid sequence of the rat heart I alpha-subunit is therefore sufficient for expression of tetrodotoxin resistance, and the rat heart I clone is likely to account for the tetrodotoxin-resistant phenotype of cardiac and denervated skeletal muscle.  相似文献   

7.
Voltage-gated potassium (Kv) channels are involved in many important cellular functions and play pivotal roles in cancer progression. The expression level of Kv2.1 was observed to be higher in the highly metastatic prostate cancer cells (PC-3), specifically in their membrane, than in immortalized prostate cells (WPMY-1 cells) and comparatively less metastatic prostate cancer cells (LNCaP and DU145 cells). However, Kv2.1 expression was significantly decreased when the cells were treated with anti-oxidants, such as N-acetylcysteine or ascorbic acid, implying that the highly expressed Kv2.1 could detect reactive oxygen species (ROS) in malignant prostate cancer cells. In addition, the blockade of Kv2.1 with stromatoxin-1 or siRNA targeting Kv2.1 significantly inhibited the migration of malignant prostate cancer cells. Our results suggested that Kv2.1 plays an important role as a ROS sensor and that it is a promising therapeutic molecular target in metastasis of prostate cancer.  相似文献   

8.
Type IIA rat brain Na+ channel alpha subunits were expressed in CHO cells by nuclear microinjection or by transfection using a vector containing both metallothionein and bacteriophage SP6 promoters. Stable cell lines expressing Na+ channels were isolated, and whole-cell Na+ currents of 0.9-14 nA were recorded. The mean level of whole-cell Na+ current (4.5 nA) corresponds to a cell surface density of approximately 2 channels active at the peak of the Na+ current per microns 2, a density comparable to that observed in the cell bodies of central neurons. The expressed Na+ channels had the voltage dependence, rapid activation and inactivation, and rapid recovery from inactivation characteristic of Na+ channels in brain neurons, bound toxins at neurotoxin receptor sites 1 and 3 with normal properties, and were posttranslationally processed to a normal mature size of 260 kd. Expression of Na+ channel cDNA in CHO cells driven by the metallothionein promoter accurately and efficiently reproduces native Na+ channel properties and provides a method for combined biochemical and physiological analysis of Na+ channel structure and function.  相似文献   

9.
10.
The epithelial Na+ channel (ENaC) is the apical entry pathway for Na+ in many Na+-reabsorbing epithelia. ENaC is a heterotetrameric protein composed of homologous alpha, beta, and gamma subunits. Mutations in ENaC cause severe hypertension or salt wasting in humans; and consequently, ENaC activity is tightly controlled. According to the concept of Na+ self-inhibition, the extracellular Na+ ion itself can reduce ENaC activity. The molecular basis for Na+ self-inhibition is unknown. Here, we describe cloning of a new ENaC subunit from Xenopus laevis (epsilonxENaC). epsilonxENaC can replace alphaxENaC and formed functional, highly selective, amiloride-sensitive Na+ channels when coexpressed with betaxENaC and gammaxENaC. Channels containing epsilonxENaC showed strong inhibition by extracellular Na+. This Na+ self-inhibition was significantly slower than for alphaxENaC-containing channels. Using site-directed mutagenesis, we show that the proximal part of the large extracellular domain controls the speed of self-inhibition. This suggests that this region is involved in conformational changes during Na+ self-inhibition.  相似文献   

11.
The actin cytoskeleton is the key cellular machinery responsible for cellular movement. Changes in the organization and distribution of actin and actin binding protein are necessary for several cellular processes such as focal adhesion formation, cell motility and cell invasion. Here we examined differences in cytoskeletal protein distribution, cell morphometry and cell motility of metastatic and non-metastatic cells. Correlations were found between metastatic potential phenotypic properties such as cell motility, cell spreading and cytoskeletal organization in prostate cancer. As a cell progresses from a normal state to a malignant state, it loses its ability to function normally and also become poorly differentiated. Differentiation therapy is concerned with the redirection of malignant cells toward a terminal, non-dividing state using non-cytotoxic agents. Two well acknowledged differentiation agents, retinoic acid (RA) and diflouromethylomithine (DFMO) were examined for their ability to alter cellular phenotypes associated with metastatic potential in rat prostate cancer cell lines. The results of these studies indicate that there are sub-cellular differences between non-metastatic and highly metastatic cells relative to cytoskeletal organization. We also show that treatment of highly metastatic cells with either RA or DFMO significantly alters cell morphology, cell morphometry and motility to states similar to non-metastatic cells.  相似文献   

12.
In the experiments here, the developmental expression of the functional Ca(2+)-independent, depolarization-activated K+ channel currents, Ito and IK, and of the voltage-gated K+ channel (Kv) alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2 in rat ventricular myocytes were examined quantitatively. Using the whole-cell patch clamp recording method, the properties and the densities of Ito and IK in ventricular myocytes isolated from postnatal day 5 (P5), 10 (P10), 15 (P15), 20 (P20), 25 (P25), 30 (P30), and adult (8-12 wk) rats were characterized and compared. These experiments revealed that mean Ito densities increase fourfold between birth and P30, whereas IK densities vary only slightly. Neither the time- nor the voltage-dependent properties of the currents vary measurably, suggesting that the subunits underlying functional Ito and IK channels are the same throughout postnatal development. In parallel experiments, the developmental expression of each of the voltage-gated K+ channel alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2, was examined quantitatively at the mRNA and protein levels using subunit-specific probes. RNase protection assays revealed that Kv1.4 message levels are high at birth, increase between P0 and P10, and subsequently decrease to very low levels in adult rat ventricles. The decrease in message is accompanied by a marked reduction in Kv1.4 protein, consistent with our previous suggestion that Kv1.4 does not contribute to the formation of functional K+ channels in adult rat ventricular myocytes. In contrast to Kv1.4, the mRNA levels of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 increase (three- to five- fold) between birth and adult. Western analyses, however, revealed that the expression patterns of these subunits proteins vary in distinct ways: Kv1.2 and Kv4.2, for example, increase between P5 and adult, whereas Kv1.5 remains constant and Kv2.1 decreases. Throughout development, therefore, there is a mismatch between the numbers of Kv alpha subunits expressed and the functional voltage-gated K+ channel currents distinguished electrophysiologically in rat ventricular myocytes. Alternative experimental approaches will be required to define directly the Kv alpha subunits that underlie functional voltage- gated K+ channels in these (and other) cells. In addition, the finding that Kv alpha subunit protein expression levels do not necessarily mirror mRNA levels suggests that caution should be exercised in attempting functional interpretations of observed changes in mRNA levels alone.  相似文献   

13.
14.
The metastatic ability of prostate cancer cells involves differential expression of ionic mechanisms. In the present study, using electrophysiological recordings and intracellular Ca2+ measurements, we investigated Ca2+ related signalling in two rat prostate cancer (MAT-LyLu and AT-2) cell lines of markedly different metastatic potential. Whole-cell voltage clamp experiments indicated the absence of an inward current carried through voltage-dependent Ca2+ channels in either cell line. A Ca2+-dependent component was also absent in the voltage-activated outward K+ currents. Indo-1 microfluorimetry confirmed these results and also revealed marked differences in the resting level of intracellular Ca2+ and the ability of the two cell lines to regulate intracellular Ca2+. The weakly metastatic AT-2 cells displayed a significantly higher resting intracellular Ca2+ than the related but strongly metastatic MAT-LyLu cell line. Increasing extracellular K+ decreased intracellular Ca2+ in the AT-2 but had no effect on intracellular Ca2+ levels in the MAT-LyLu cells. Furthermore, increasing extracellular Ca2+ increased intracellular Ca2+ in AT-2 but, again, had no effect on MAT-LyLu cells. These results suggested the presence of a tonic, voltage-independent Ca2+ permeation mechanism operating specifically in the AT-2 cells. The influx of Ca2+ into the AT-2 cells was suppressed by both CdCl2 (100-300 microM) and SKF-96365 (10-30 microM). It is concluded that the strongly metastatic MAT-LyLu cell line lacks a voltage-independent basal Ca2+ influx mechanism that is present in the weakly metastatic AT-2 cells.  相似文献   

15.
16.
The review summarizes recent data on the structural and functional organization and regulation mechanisms of Na+ transport in epithelial systems. The review is focused on the structure, function, regulation and pathology of epithelial Na+ channels, which are critical for Na+ homeostasis maintenance and blood pressure control.  相似文献   

17.
Voltage-gated Na+ channels are expressed by highly metastatic MAT-LyLu cells, but not by poorly metastatic AT-2 cells, derived from the rodent Dunning model of prostatic cancer. We have investigated the possible involvement of these channels in the morphological development of the cells. Incubation of both the MAT-LyLu and the AT-2 cell line for 24 h with the Na+ channel blocker tetrodotoxin (TTX) at 6 μM altered the morphology only of the MAT-LyLu cell line. TTX produced significant decreases in: (a) cell process length and (b) field diameter, and increases in (c) cell body diameter and (d) process thickness. Importantly, 6 μM TTX had no significant effects on proliferation rates or cellular toxicity. The results suggest that Na+ channel activity plays a significant role in determining the morphological development of MAT-LyLu cells in such a way as to enhance their metastatic potential. Received: 9 March 1998 / Accepted: 5 October 1998  相似文献   

18.
The fundamental principles underlying voltage sensing, a hallmark feature of electrically excitable cells, are still enigmatic and the subject of intense scrutiny and controversy. Here we show that a novel prokaryotic voltage-gated K(+) (Kv) channel from Listeria monocytogenes (KvLm) embodies a rudimentary, yet robust, sensor sufficient to endow it with voltage-dependent features comparable to those of eukaryotic Kv channels. The most conspicuous feature of the KvLm sequence is the nature of the sensor components: the motif is recognizable; it appears, however, to contain only three out of eight charged residues known to be conserved in eukaryotic Kv channels and accepted to be deterministic for folding and sensing. Despite the atypical sensor sequence, flux assays of KvLm reconstituted in liposomes disclosed a channel pore that is highly selective for K(+) and is blocked by conventional Kv channel blockers. Single-channel currents recorded in symmetric K(+) solutions from patches of enlarged Escherichia coli (spheroplasts) expressing KvLm showed that channel open probability sharply increases with depolarization, a hallmark feature of Kv channels. The identification of a voltage sensor module in KvLm with a voltage dependence comparable to that of other eukaryotic Kv channels yet encoded by a sequence that departs significantly from the consensus sequence of a eukaryotic voltage sensor establishes a molecular blueprint of a minimal sequence for a voltage sensor.  相似文献   

19.
20.
We have developed a simple yet effective apparatus, based upon negative pressure directed to the tip of a micro-pipette, to measure the adhesiveness of single cells. The “single cell adhesion measuring apparatus” (SCAMA) could differentiate between the adhesion of strongly versus weakly metastatic cancer cells as well as normal cells. Adhesion was quantified as “detachment negative pressure” (DNP) or “DNP relative to cell size” (DNPR) where a noticeable difference in cell size was apparent. Thus, for rat and human prostate and human breast cancer cell lines, adhesiveness (DNPR values) decreased in line with increased metastatic potential. Using the SCAMA, we investigated the effect of tetrodotoxin (TTX), a specific blocker of voltage-gated Na+ channels (VGSCs), on the adhesion of rat and human prostate cancer cell lines of markedly different metastatic potential. Following pretreatment with TTX (48 h with 1 μM), the adhesion values for the Mat-LyLu cells increased significantly 4.3-fold; there was no effect on the AT-2 cells. For the strongly metastatic PC-3M cells, TTX treatment caused a significant (∼30%) increase in adhesion. The adhesion of PNT2-C2 (“normal”) cells was not affected by the TTX pretreatment. The TTX-induced increase in the adhesiveness of the strongly metastatic cells was consistent with the functional VGSC expression in these cells and the proposed role of VGSC activity in metastatic cell behaviour. In conclusion, the SCAMA, which can be constructed easily and cheaply, offers a simple and effective method to characterise single-cell adhesion and its modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号