首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypes may evolve to become integrated in response to functional demands. Once evolved, integrated phenotypes, often modular, can also influence the trajectory of subsequent responses to selection. Clearly, connecting modularity and functionally adaptive evolution has been challenging. The teleost skull and jaw structures are useful for understanding this connection because of the key roles that these structures play in feeding in novel environments with different prey resources. In the present study, we examined such a structure in the threespine stickleback: the opercular four‐bar lever that functions in jaw opening. Comparing oceanic and two fresh‐water populations, we find marked phenotypic divergence in the skull opercular region, and the major axes of morphological and functional variation of the lever are found to be highly correlated. All three populations share the same global skull integration structure, and a conserved, strongly‐supported modular organization is evident in the region encompassing the lever. Importantly, a boundary between two modules that subdivides the lever apparatus corresponds to the region of most prominent morphological evolution. The matched modular phenotypic and functional architecture of head and jaw structures of stickleback therefore may be important for facilitating their rapid adaptive transitions between highly divergent habitats. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 375–390.  相似文献   

2.
Scaling predictions pioneered by A.V. Hill state that isometric changes in kinematics result from isometric changes in size. These predictions have been difficult to support because few animals display truly isometric growth. An exception to this rule is said to be the toads in the genus Bufo, which can grow over three orders of magnitude. To determine whether skull shape increases isometrically, I used linear measurements and geometric morphometrics to quantify shape variation in a size series of 69 skulls from the marine toad, B. marinus. Toads ranged in body mass from 1.8 gm to a calculated 1,558.9 gm. Of all linear measurements (S/V length, skull width, skull length, levator mass, depressor mass, adductor foramen area), only the area of the adductor foramen increased faster than body mass; the remaining variables increased more slowly. In addition, modeling the lower jaw as a lever‐arm system showed that the lengths of the closing in‐ and out‐levers scaled isometrically with body mass despite the fact that the skull itself is changing allometrically. Geometric morphometrics discerned areas of greatest variability with increasing body mass at the rear of the skull in the area of the squamosal bone and the adductor foramen. This increase in area of the adductor foramen may allow more muscle to move the relatively greater mass of the lower jaw in larger toads, although adductor mass scales with body mass. If B. marinus feeds in a similar manner to other Bufo, these results imply that morphological allometry may still result in kinematic isometry. J. Morphol. 241:115–126, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Using a geometric morphometric approach, we explored the variation in skull size and skull shape in banded newts (genus Ommatotriton). The genus Ommatotriton is represented by two allopatric, genetically well‐defined species: Ommatotriton ophryticus and O. vittatus. Within each species, two subspecies have been recognised. The samples used in this study cover the geographical and genetic variation within each species. We found statistically significant variation in skull size between species and among populations within species. When corrected for size, there was no significant variation in shape between species. Our results indicate that the variation in skull shape within the genus Ommatotriton is almost entirely due to size‐dependent, allometric shape changes. The exception is the shape of the ventral skull in males. Males of O. ophryticus and O. vittatus significantly diverge in the shape of the ventral cranium. The ventral skull, more precisely the upper jaw and palate, is directly functionally related to feeding. In general, our results indicate that allometry is a significant factor in the morphological variation of banded newts. However, the divergence in the ventral skull shape of males indicates that sexual selection and niche partitioning may have influenced the evolution of skull shape in these newts.  相似文献   

4.
Allometric relationships are important sources of information for many types of anthropological and biological research. The baseline for all allometric relationships is isometry (or geometric similarity), the principal that shape is invariant of size. Here, we formally test for geometric similarity in modern humans, looking at the maximum lengths of four long bones (humerus, radius, femur, and tibia). We use Jolicoeur's multivariate allometry method to examine globally distributed samples of human populations, both collectively and individually. Results indicate that humans are not geometrically similar, although morphological deviations from isometry are small.  相似文献   

5.
Functional decoupling of oral and pharyngeal jaws is widely considered to have expanded the ecological repertoire of cichlid fishes. But, the degree to which the evolution of these jaw systems is decoupled and whether decoupling has impacted trophic diversification remains unknown. Focusing on the large Neotropical radiation of cichlids, we ask whether oral and pharyngeal jaw evolution is correlated and how their evolutionary rates respond to feeding ecology. In support of decoupling, we find relaxed evolutionary integration between the two jaw systems, resulting in novel trait combinations that potentially facilitate feeding mode diversification. These outcomes are made possible by escaping the mechanical trade-off between force transmission and mobility, which characterizes a single jaw system that functions in isolation. In spite of the structural independence of the two jaw systems, results using a Bayesian, state-dependent, relaxed-clock model of multivariate Brownian motion indicate strongly aligned evolutionary responses to feeding ecology. So, although decoupling of prey capture and processing functions released constraints on jaw evolution and promoted trophic diversity in cichlids, the natural diversity of consumed prey has also induced a moderate degree of evolutionary integration between the jaw systems, reminiscent of the original mechanical trade-off between force and mobility.  相似文献   

6.
Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many‐to‐one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood.  相似文献   

7.
Intramandibular joints (IMJ) are novel articulations between bony elements of the lower jaw that have evolved independently in multiple fish lineages and are typically associated with biting herbivory. This novel joint is hypothesized to function by augmenting oral jaw expansion during mouth opening, which would increase contact between the tooth‐bearing area of the jaws and algal substratum during feeding, resulting in more effective food removal from the substrate. Currently, it is not understood if increased flexibility in a double‐jointed mandible also results in increased force generation during herbivorous biting and/or scraping. Therefore, we selected the herbivore Girella laevifrons for a mechanical study of the IMJ lower jaw lever system. For comparative purposes, we selected Graus nigra, a non–IMJ‐bearing species, from a putative sister genus. Shortening of the lower jaw, during flexion at the IMJ, resulted in a more strongly force‐amplifying closing lever system in the lower jaw, even in the absence of notable changes to the sizes of the muscles that power the lever system. To explain how the IMJ itself functions, we use a four‐bar linkage that models the transmission of force and velocity to and through the lower jaw via the IMJ. When combined, the functionally interrelated lever and linkage models predict velocity to be amplified during jaw opening, whereas jaw closing is highly force modified by the presence of the IMJ. Moreover, the function of the IMJ late during jaw closure provides enough velocity to detach sturdy and resilient prey. Thus, this novel jaw system can alternate between amplifying the force or the velocity exerted onto the substrate where food items are attached. This unique mechanical configuration supports the argument that IMJs are functional innovations that have evolved to meet novel mechanical challenges and constraints placed on the feeding apparatus by attached and sturdy food sources. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force.  相似文献   

9.
Geometric morphometric techniques were used to examine allometric and non-allometric influences on sexual shape dimorphism (SShD) in the ventral cranium (skull base, palate and upper jaw) of four species of lacertid lizards (Podarcis muralis, Podarcis melisellensis, Dalmatolacerta oxycephala, Dinarolacerta mosorensis). These species differ in body shape, ecology and degree of phylogenetic relatedness. The structures of the ventral cranium that were studied are directly involved in the mechanics of feeding and are connected to the jaw musculature; these structures are potentially subject to both sexual and natural selection. Allometry accounted for a considerable degree of cranial shape variation between the sexes. Allometric shape changes between individuals with smaller cranium size and individuals with larger cranium size are mostly related to changes in the skull base showing pronounced negative allometry. The rostral part, however, either scaled isometrically or showed less pronounced negative allometry than the skull base. Non-allometric intersexual shape variation predominantly involved changes related to the jaw adductor muscle chamber, i.e., changes that are associated with biomechanically relevant traits of the jaw system in females and males. Both allometric and non-allometric shape changes appeared to be species-specific. Our results indicate that natural and sexual selection may be involved in the evolution of SShD.  相似文献   

10.
We calculated the wind-induced bending moments and stresses generated in the stems of five Prunus serotina conspecifics differing in height and canopy shape and size (based on detailed measurements of stem projected area and location with respect to ground level) to test the hypothesis that wind-loads generate uniform and constant stress levels along the lengths of tree twigs, branches, and trunks. These calculations were performed using five different wind speed profiles to evaluate the relative importance of the shape of wind speed profiles versus the ’geometry’ of tree shape on stem stress distributions and magnitudes. Additionally, we evaluated the effect of absolute tree size and stem taper on wind- induced stresses by scaling the size of smaller conspecifics to the absolute height of the largest of the five trees yet retaining the original stem proportions (i.e., diameter relative to stem length) for each plant. Finally, we also determined how the factor of safety for wind-loading (i.e., the quotient of stem yield stress and wind-load stress) changed as a function of tree size (and, presumably, age). Our results indicate that wind-load stress levels (1) vary along stem length even for the same wind speed profile and the same maximum wind speed; (2) would increase to dangerous levels with increasing tree height if it were not for ontogenetic changes in stem taper and canopy shape that reduce stress intensities to manageable levels; (3) tend to be more dependent on stem taper and canopy shape and size than on the shape of the wind speed profile; and (4) the factor of safety against wind-induced mechanical failure decreases as trees get larger, but varies along the length of large trees such that preferential stem failure is likely and functionally adaptive. We thus (1) reject the hypothesis of constant wind-induced stress levels; (2) support the view that size-dependent changes in stem taper are required to maintain wind-load mechanical reliability; and (3) suggest that certain portions of mature trees are ’designed’ to fail under high winds speeds, thereby reducing drag and the bending moments and stresses experienced by trunks. Received: 24 May 1999 / Accepted: 8 October 1999  相似文献   

11.
Organismal size and shape inseparably interact with tissue biomechanical properties. It is therefore essential to understand how size, shape, and biomechanics interact in ontogeny to produce morphological diversity. We estimated within species branch length‐diameter allometries and reconstructed the rates of ontogenetic change along the stem in mechanical properties across the simaruba clade in the tropical tree genus Bursera, measuring 376 segments from 97 branches in nine species in neotropical dry to rain forest. In general, species with stiffer materials had longer, thinner branches, which became stiffer more quickly in ontogeny than their counterparts with more flexible materials. We found a trend from short stature and flexible tissues to tall statures and stiff tissues across an environmental gradient of increasing water availability, likely reflecting a water storage–mechanical support tradeoff. Ontogenetic variation in size, shape, and mechanics results in diversity of habits, for example, rapid length extension, sluggish diameter expansion, and flexible tissues results in a liana, as in Bursera instabilis. Even species of similar habit exhibited notable changes in tissue mechanical properties with increasing size, illustrating the inseparable relationship between organismal proportions and their tissue mechanics in the ontogeny and evolution of morphological diversity.  相似文献   

12.
The feeding biomechanics of premetamorphic, metamorphic, and postmetamorphic southern flounder, Paralichthys lethostigma, were investigated to better understand the origin and design of adult pleuronectiform feeding mechanisms. Larval P. lethostigma were sampled from culture tanks every day from first feeding through metamorphosis. Fish were then fixed, cleared, and double stained for cartilage and bone. Postmetamorphic juvenile and adult fish were obtained from aquaculture facilities, fixed, and the muscles and bones of the head dissected. All fish were digitally photographed from both sides of the head. Measurements from digital images included head depth, head length, and quadratal angle (a measure of articular‐quadrate position). Measurements were also made of closing in‐lever, opening in‐lever, and out‐lever moment arm lengths for the determination of lower jaw opening and closing mechanical advantage. In premetamorphic larvae, quadratal angle increased from 40° to 80°, opening lever ratio increased from 0.10 to 0.37, and closing lever ratio increased from 0.06 to 0.40. From these measurements and observations of cleared and double‐stained specimens, it was determined that lower jaw depression and elevation changed from a hyoid‐based to an opercular‐based mechanism prior to the onset of metamorphosis. With migration of the right eye to the left side of the head, quadratal angle remained relatively unchanged at 72° to 84°, opening lever ratio decreased from a high of 0.32 to a low of 0.14, and closing lever ratio decreased to as low as 0.17. Postmetamorphic fish exhibited little change with a quadratal angle of 83° to 84°, an opening lever ratio of 0.19, and a closing lever ratio of 0.17 to 0.19. Paired measurements made on the left (ocular) and right (blind) sides of the head indicated that quadratal angle was asymmetrical during metamorphosis (P = 0.003, α = 0.017). Mechanical advantage for lower jaw elevation was also bilaterally asymmetrical following metamorphosis (P = 0.002, α = 0.013). Because mechanical advantage for lower jaw depression was not directionally asymmetrical in metamorphic or postmetamorphic P. lethostigma, functional asymmetry (lateral jaw flexion) is not predicted for jaw opening. These results suggest differences in the design and function of feeding mechanisms for premetamorphic, metamorphic, and postmetamorphic P. lethostigma. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Convergent evolution in similar environments constitutes strong evidence of adaptive evolution. Transported with people around the world, house mice colonized even remote areas, such as Sub‐Antarctic islands. There, they returned to a feral way of life, shifting towards a diet enriched in terrestrial macroinvertebrates. Here, we test the hypothesis that this triggered convergent evolution of the mandible, a morphological character involved in food consumption. Mandible shape from four Sub‐Antarctic islands was compared to phylogeny, tracing the history of colonization, and climatic conditions. Mandible shape was primarily influenced by phylogenetic history, thus discarding the hypothesis of convergent evolution. The biomechanical properties of the jaw were then investigated. Incisor in‐lever and temporalis out‐lever suggested an increase in the velocity of incisor biting, in agreement with observations on various carnivorous and insectivorous rodents. The mechanical advantage related to incisor biting also revealed an increased functional performance in Sub‐Antarctic populations, and appears to be an adaptation to catch prey more efficiently. The amount of change involved was larger than expected for a plastic response, suggesting microevolutionary processes were evolved. This study thus denotes some degree of adaptive convergent evolution related to changes in habitat‐related changes in dietary items in Sub‐Antarctic mice, but only regarding simple, functionally relevant aspects of mandible morphology.  相似文献   

14.
Adult static intraspecific allometry of jaw size and tooth area was evaluated in a sample of 100 Cercopithecus aethiops crania (50 male, 50 female). Tooth areas were calculated from mesiodistal and buccolingual measurements of all the teeth in both arcades and were scaled to four viscero-cranial measurements: bimaxillary breadth, maxillo-alveolar length, mandibular length and bigonial width. Allometric coefficients calculated for jaw dimensions alone indicate tighter viscerocranial integration in females than in males. A finding of note was that half of the variation in maxillo-alveolar length may be accounted for by variation in mandibular length: females are isometric, males negatively allometric.
A similar degree of allometric mosaicism was found when maxillary incisor size was scaled to maxillary length and width. In females, the relationship was negatively allometric, whilst incisor size in males was found to be unrelated to either. Negative allometry characterized the relationship of canine base area to jaw length in both sexes, with males additionally being positively allometric to mandibular width.
The scaling of postcanine tooth areas to jaw length was characterized by a dichotomous pattern: males showed significant mandibular integration whilst females showed only significant maxillary integration. Compensatory tooth size interaction between maxillary canine base area and the summed incisor and postcanine areas was suggested by the significant negative allometric relation between them.  相似文献   

15.
This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed.  相似文献   

16.
The mammalian mandible is a developmentally modular but functionally integrated system. Whether morphological integration can evolve to match the optimal pattern of functional integration may depend on the developmental origin of integration, specifically, on the role that direct epigenetic interactions play in shaping integration. These interactions are hypothesized to integrate modules and also to be highly conservative, potentially constraining the evolution of integration. Using the fox squirrel (Sciurus niger) mandible as a model system, we test five a priori developmental hypotheses that predict mandibular integration and we also explore for correlations between shapes of mandibular regions not anticipated by any of the developmental models. To determine whether direct epigenetic interactions are highly conserved in rodents, we examine the correlation structure of fluctuating asymmetry, and compare integration patterns between fox squirrels and prairie deer mice (Peromyscus maniculatus bairdii). In fox squirrels, we find a correlation structure unanticipated by all a priori developmental models: adjacent parts along the proximodistal jaw axis are correlated whereas more distant ones are not. The most notable exception is that the shape of the anterior incisor alveolus is correlated with the shape of the ramus (FA component) or coronoid (symmetric component). Those exceptions differ between species; in prairie deer mice, the molar alveolus is connected to more parts, and the incisor alveolus to fewer, than in fox squirrels. The structure of integration suggests that the mandible cannot be decomposed into parts but rather is a single connected unit, a result consistent with its functional integration. That match between functional and developmental integration may arise, at least in part, from function-induced growth, building developmental integration into the functional system and enabling direct epigenetic interactions to evolve when function does.  相似文献   

17.
The evolution of feeding mechanisms in the ray-finned fishes(Actinopterygii) is a compelling example of transformation ina musculoskeletal complex involving multiple skeletal elementsand numerous muscles that power skull motion. Biomechanicalmodels of jaw force and skull kinetics aid our understandingof these complex systems and enable broad comparison of feedingmechanics across taxa. Mechanical models characterize how musclesmove skeletal elements by pulling bones around points of rotationin lever mechanisms, or by transmitting force through skeletalelements connected in a linkage. Previous work has focused onthe feeding biomechanics of several lineages of fishes, buta broader survey of skull function in the context of quantitativemodels has not been attempted. This study begins such a surveyby examining the diversity of mechanical design of the oraljaws in 35 species of ray-finned fishes with three main objectives:(1) analyze lower jaw lever models in a broad phylogenetic rangeof taxa, (2) identify the origin and evolutionary patterns ofchange in the linkage systems that power maxillary rotationand upper jaw protrusion, and (3) analyze patterns of changein feeding design in the context of actinopterygian phylogeny.The mandibular lever is present in virtually all actinopterygians,and the diversity in lower jaw closing force transmission capacity,with mechanical advantage ranging from 0.04 to 0.68, has importantfunctional consequences. A four-bar linkage for maxillary rotationarose in the Amiiformes and persists in various forms in manyteleost species. Novel mechanisms for upper jaw protrusion basedon this linkage for maxillary rotation have evolved independentlyat least five times in teleosts. The widespread anterior jawslinkage for jaw protrusion in percomorph fishes arose initiallyin Zeiformes and subsequently radiated into a wide range ofpremaxillary protrusion capabilities.  相似文献   

18.
Relative size and arrangement of the brain and paired sense organs are examined in three species of Thorius, a genus of minute, terrestrial salamanders that are among the smallest extant tailed tetrapods. Analogous measurements of representative species of three related genera of larger tropical (Pseudoeurycea, Chiropterotriton) and temperate (Plethodon) salamanders are used to identify changes in gross morphology of the brain and sense organs that have accompanied the evolution of decreased head size in Thorius and their relation to associated changes in skull morphology. In adult Thorius, relative size (area measured in frontal plane, and length) of the eyes, otic capsules, and brain each is greater than in adults of all of the larger genera; relative size of the nasal capsules is unchanged or slightly smaller. Interspecific scaling phenomena--negative allometry of otic capsule, eye and brain size, isometry or slight positive allometry of nasal capsule size, all with respect to skull length--also are characteristic of intraspecific (ontogenetic) comparisons in both T. narisovalis and Pseudoeurycea goebeli. Predominance of the brain and eyes in Thorius results in greater contact and overlap among these structures and the nasal capsules in the anterior portion of the head. This is associated with anterior displacement of both the eyes and nasal capsules, which now protrude anterior to the skull proper; a change in eye shape; and medial deformation of anterior braincase walls. Posteriorly, predominance of the otic capsules has effected a reorientation of the jaw suspensorium to a fully vertical position that is correlated with the novel presence of a posteriorly directed squamosal process and shift in origin of the quadropectoralis muscle. Many of these changes in cranial morphology may be explained simply as results of mechanical (physical) interactions among the skeletal, nervous, and sensory components during head development at reduced size. This provides further evidence of the role of nervous, sensory, and other "soft" tissues in cranial skeletal morphogenesis, and reinforces the need to consider these tissues in analyses of skull evolution.  相似文献   

19.
Inbreeding is expected to increase the variability in size and shape within populations. The distinct effects of inbreeding on size and shape suggest that they are governed by different developmental pathways. One unresolved question is whether the non‐allometric shape component is partially unconstrained developmentally and therefore whether shape is evolvable. In the present study, we utilized a mass outbred population of Drosophila melanogaster maintained at standard laboratory conditions. Eight lines with equivalent expected levels of inbreeding (F ≈ 0.67) were obtained by restricting the size of each population to two pairs for nine generations. Nine landmarks were measured on Drosophila wings of the inbreed lines and compared with those of the mass population. Wing landmarks comprise an excellent model system for studying evolution of size and shape. Landmark measurements were analyzed with a Procrustes generalized least squares procedure. To visualize global shape changes among samples, we reconstructed the mean shape and the shape changes related to both the allometric and non‐allometric components. An increased variability in the non‐allometric shape component was found with inbreeding. This indicated that shape was not entirely developmentally constrained, and therefore that shape appears to be evolvable. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 626–634.  相似文献   

20.
Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade''s evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号