共查询到20条相似文献,搜索用时 15 毫秒
1.
It is important to understand the conformational biases that are present in unfolded states to understand protein folding. In this context, it is surprising that even a short tripeptide like AFA samples folded/ordered conformation as demonstrated recently by NMR experiments of the peptide in aqueous solution at 280 K. In this paper, we present molecular dynamics simulation of the peptide in explicit water using OPLS-AA/L all-atom force field. The results are in overall agreement with NMR results and provide some further insights. The peptide samples turn and extended conformational forms corresponding to minima in free energy landscape. Frequent transitions between the minima are observed due to modest free energy barriers. The turn conformation seems to be stabilized by hydrophobic interactions and possibly by bridging water molecules between backbone donors and acceptors. Thus the peptide does not sample conformations randomly, but samples well defined conformations. The peptide served as a model for folding-unfolding equilibrium in the context of peptide folding. Further, implications for drug design are also discussed. 相似文献
2.
Conformational changes upon protein-protein association are the key element of the binding mechanism. The study presents a systematic large-scale analysis of such conformational changes in the side chains. The results indicate that short and long side chains have different propensities for the conformational changes. Long side chains with three or more dihedral angles are often subject to large conformational transition. Shorter residues with one or two dihedral angles typically undergo local conformational changes not leading to a conformational transition. A relationship between the local readjustments and the equilibrium fluctuations of a side chain around its unbound conformation is suggested. Most of the side chains undergo larger changes in the dihedral angle most distant from the backbone. The frequencies of the core-to-surface interface transitions of six nonpolar residues and Tyr are larger than the frequencies of the opposite surface-to-core transitions. The binding increases both polar and nonpolar interface areas. However, the increase of the nonpolar area is larger for all considered classes of protein complexes, suggesting that the protein association perturbs the unbound interfaces to increase the hydrophobic contribution to the binding free energy. To test modeling approaches to side-chain flexibility in protein docking, conformational changes in the X-ray set were compared with those in the docking decoy sets. The results lead to a better understanding of the conformational changes in proteins and suggest directions for efficient conformational sampling in docking protocols. 相似文献
3.
Houqiang Li Shuhua Chen Huaming Zhao 《International journal of biological macromolecules》1990,12(6):374-378
The structures of 25 proteins arbitrarily chosen are investigated by fractal geometry, and their fractal dimensions (Df) and conformational entropies S(N0) are calculated by Havlin—Ben Avraham and Monte Carlo method, respectively. Comparison of the Df and S(N0) gives the relation: Df = 1.532 - 3.00 × 10−4 S(N0). The entropy data obtained by Monte Carlo method for the chain of random self-avoiding walks confirm the prediction of renormalization group: S(N0) = 1.544N0 + 0.1667 In N0 + 0.1570 where N0 is the number of residues in a protein chain. Both the Df and S(N0) reflect the conformational properties of a protein molecular chain. The idea resulting from the present communication suggests that the thermodynamic behaviours of proteins may be related to multifractals. 相似文献
4.
5.
For complexes between proteins and very small hydrophobic ligands, hydrophobic effects alone may be insufficient to outweigh the unfavorable entropic terms resulting from bimolecular association. NMR relaxation experiments indicate that the backbone flexibility of mouse major urinary protein increases upon binding the hydrophobic mouse pheromone 2-sec-butyl-4,5-dihydrothiazole. The associated increase in backbone conformational entropy of the protein appears to make a substantial contribution toward stabilization of the protein-pheromone complex. This term is likely comparable in magnitude to other important free energy contributions to binding and may represent a general mechanism to promote binding of very small ligands to macromolecules. 相似文献
6.
We determined the partial molar volumes, V degrees , and adiabatic compressibilities, K degrees (S), of N-acetyl amino acids with neutralized carboxyl termini, N-acetyl amino acid amides, and N-acetyl amino acid methylamides between 18 and 55 degrees C. The individual compounds in the three classes have been selected so as to collectively cover the 20 naturally occurring amino acid side chains. We interpret our experimental results in terms of the volumetric contributions and hydration properties of individual amino acid side chains and their constituent atomic groups. We also conducted pH-dependent densimetric and acoustic measurements to determine changes in volume and compressibility accompanying protonation of the aspartic acid, glutamic acid, histidine, lysine, and arginine side chains. We use our resulting data to develop an additive scheme for calculating the partial molar (specific) volume and adiabatic compressibility of fully extended polypeptide chains as a function of pH and temperature. We discuss the differences and similarities between our proposed scheme and the reported additive approaches. We compare our calculated volumetric characteristics of the fully extended conformations of apocytochrome c and apomyoglobin with the experimental values measured in water (for apocytochrome c) or acidic pH (for apomyoglobin). At these respective experimental conditions, the two proteins are unfolded. However, the comparison between the calculated and experimental volumetric characteristics suggests that neither apocytochrome c nor apomyoglobin are fully unfolded and retain a sizeable core of solvent-inaccessible groups. 相似文献
7.
Probing protein hydration and conformational states in solution. 总被引:5,自引:1,他引:4
The addition of polyethylene glycol (PEG), of various molecular weights, to solutions bathing yeast hexokinase increases the affinity of the enzyme for its substrate glucose. The results can be interpreted on the basis that PEG acts directly on the protein or indirectly through water activity. The nature of the effects suggests to us that PEG's action is indirect. Interpretation of the results as an osmotic effect yields a decrease in the number of water molecules, delta Nw, associated with the glucose binding reaction. delta Nw is the difference in the number of PEG-inaccessible water molecules between the glucose-bound and glucose-free conformations of hexokinase. At low PEG concentrations, delta Nw increases from 50 to 326 with increasing MW of the PEG from 300 to 1000, and then remains constant for MW-PEG up to 10,000. This suggests that up to MW 1000, solutes of increasing size are excluded from ever larger aqueous compartments around the protein. Three hundred and twenty-six waters is larger than is estimated from modeling solvent volumes around the crystal structures of the two hexokinase conformations. For PEGs of MW > 1000, delta Nw falls from 326 to about 25 waters with increasing PEG concentration, i.e., PEG alone appears to "dehydrate" the unbound conformation of hexokinase in solution. Remarkably, the osmotic work of this dehydration would be on the order of only one k T per hexokinase molecule. We conclude that under thermal fluctuations, hexokinase in solution has a conformational flexibility that explores a wide range of hydration states not seen in the crystal structure. 相似文献
8.
J. Alejandro D'Aquino Javier Gmez Vincent J. Hilser Kon Ho Lee L. Mario Amzel Ernesto Freire 《Proteins》1996,25(2):143-156
The magnitude of the conformational entropy change experienced by the peptide backbone upon protein folding was investigated experimentally and by computational analysis. Experimentally, two different pairs of mutants of a 33 amino acid peptide corresponding to the leucine zipper region of GCN4 were used for high-sensitivity microcalorimetric analysis. Each pair of mutants differed only by having alanine or glycine at a specific solvent-exposed position under conditions in which the differences in stability could be attributed to differences in the conformational entropy of the unfolded state. The mutants studied were characterized by different stabilities but had identical heat capacity changes of unfolding (ΔCp), identical solvent-related entropies of unfolding (ΔSsolv), and identical enthalpies of unfolding (ΔH) at equivalent temperatures. Accordingly, the differences in stability between the different mutants could be attributed to differences in conformational entropy. The computational studies were aimed at generating the energy profile of backbone conformations as a function of the main chain dihedral angles ϕ and ϱ. The energy profiles permit a direct calculation of the probability distribution of different conformers and therefore of the conformational entropy of the backbone. The experimental results presented in this paper indicate that the presence of the methyl group in alanine reduces the conformational entropy of the peptide backbone by 2.46 ± 0.2 cal/K · mol with respect to that of glycine, consistent with a 3.4-fold reduction in the number of allowed conformations in the alanine-containing peptides. Similar results were obtained from the energy profiles. The computational analysis also indicates that the addition of further carbon atoms to the side chain had only a small effect as long as the side chains were unbranched at position β. A further reduction with respect to Ala of only 0.61 and 0.81 cal/K · mol in the backbone entropy was obtained for leucine and lysine, respectively. β-branching (Val) produces the largest decrease in conformational entropy (1.92 cal/K · mol less than Ala). Finally, the backbone entropy change associated with the unfolding of an α-helix is 6.51 cal/K · mol for glycine. These and previous results have allowed a complete estimation of the conformational entropy changes associated with protein folding. © 1996 Wiley-Liss, Inc. 相似文献
9.
Hiroshi Nakagawa Hironari Kamikubo Mikio Kataoka 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(1):27-33
In order to examine the properties specific to the folded protein, the effect of the conformational states on protein dynamical transition was studied by incoherent elastic neutron scattering for both wild type and a deletion mutant of staphylococcal nuclease. The deletion mutant of SNase which lacks C-terminal 13 residues takes a compact denatured structure, and can be regarded as a model of intrinsic unstructured protein. Incoherent elastic neutron scattering experiments were carried out at various temperature between 10 K and 300 K on IN10 and IN13 installed at ILL. Temperature dependence of mean-square displacements was obtained by the q-dependence of elastic scattering intensity. The measurements were performed on dried and hydrated powder samples. No significant differences were observed between wild type and the mutant for the hydrated samples, while significant differences were observed for the dried samples. A dynamical transition at ∼ 140 K observed for both dried and hydrated samples. The slopes of the temperature dependence of MSD before transition and after transition are different between wild type and the mutant, indicating the folding induces hardening. The hydration water activates a further transition at ∼ 240 K. The behavior of the temperature dependence of MSD is indistinguishable for wild type and the mutant, indicating that hydration water dynamics dominate the dynamical properties. 相似文献
10.
K.S. Ajish Kumar Ziv Harpaz Mahmood Haj-Yahya Ashraf Brik 《Bioorganic & medicinal chemistry letters》2009,19(14):3870-3874
Chemical ligation methods for the assembly of functional proteins continue to advance our basic understanding of protein structure and function. In this work, we report on our progress towards the full synthesis of HIV-1 Tat utilizing our newly developed ligation method; side-chain assisted ligation. The HIV-1 Tat was assembled from three fragments wherein the two thioester peptides were synthesized efficiently using the side-chain anchoring strategy following Fmoc-SPPS. The side-chain assisted ligation step was efficient and provided the ligation product in good yield. Following this step, native chemical ligation was used to fully assemble the HIV-1 Tat protein. Although the removal of the auxiliary in small peptides was straightforward, in the case of HIV-1 Tat this step was inefficient thus hampering the completion of the synthesis. 相似文献
11.
Marjan Sabbaghian Azadeh Ebrahim-Habibi Mohsen Nemat-Gorgani 《International journal of biological macromolecules》2009,44(2):156-162
Protein aggregation is of crucial importance in a wide variety of situations. High temperatures, combined with other denaturing conditions, have been used very extensively to decipher some of the fundamentals related to formation of amorphous and fibrillar protein aggregates. The present study reports on the dependency of thermal aggregation of bovine liver glutamate dehydrogenase (GDH), a well-characterized allosteric enzyme, on its conformational state. The initial phases of thermal aggregation of this protein was followed in the presence of a number of well-known allosteric ligands. Positive effectors were found to decrease the rate and extent of aggregation in a concentration dependent manner, while negative effectors did the reverse. ADP, one of the most characterized GDH activators was found to stabilize a specific protein conformation resulting in loss of propensity to aggregate. The importance of this observation related to control of protein–protein interactions leading to protein aggregation is discussed. 相似文献
12.
The molecular conformations of salmon calcitonin in aqueous solution have been investigated by exploiting the different influences of excitonic coupling on the amide I band profile in the isotropic and anisotropic Raman, FTIR, and vibrational circular dichroism spectra of a polypeptide. The N-terminal loop, caused by a disulfide bridge between cysteines at positions 1 and 7, was modeled by performing a conformational search by molecular mechanics calculations. The remaining part of the peptide chain was modeled as a mixture of three sequences containing different fractions of residues adopting poly-l-proline II (PPII), extended beta-strand, and alpha-helix-like conformations. This yielded an excellent reproduction of the experimentally observed amide I' band profiles. A comparison with recent data on the beta-amyloid fragment Abeta(1)(-)(28) revealed a lower PPII content and more conformational heterogeneity for calcitonin. Thus, our results underscore the notion that individual structural propensities of amino acid residues give rise to structural differences between the unfolded states of even long peptide chains, at variance with expectations based on a random or statistical coil model. 相似文献
13.
To better understand the interplay between protein-protein binding and protein dynamics, we analyzed molecular dynamics simulations of 17 protein-protein complexes and their unbound components. Complex formation does not restrict the conformational freedom of the partner proteins as a whole, but, rather, it leads to a redistribution of dynamics. We calculate the change in conformational entropy for seven complexes with quasiharmonic analysis. We see significant loss, but also increased or unchanged conformational entropy. Where comparison is possible, the results are consistent with experimental data. However, stringent error estimates based on multiple independent simulations reveal large uncertainties that are usually overlooked. We observe substantial gains of pseudo entropy in individual partner proteins, and we observe that all complexes retain residual stabilizing intermolecular motions. Consequently, protein flexibility has an important influence on the thermodynamics of binding and may disfavor as well as favor association. These results support a recently proposed unified model for flexible protein-protein association. 相似文献
14.
Gibrat G Assairi L Craescu CT Hui Bon Hoa G Loew D Lombard B Blouquit L Bellissent-Funel MC 《Biochimica et biophysica acta》2012,1824(10):1097-1106
Apo-calmodulin, a small, mainly α, soluble protein is a calcium-dependent protein activator. It is made of two N- and C-terminal domains having a sequence homology of 70%, an identical folding but different stabilities, and is thus an interesting system for unfolding studies. The use of small angle neutron scattering (SANS) and other biophysical techniques has permitted to reveal conformational difference between native and thermal denatured states of apo-calmodulin. The results show that secondary and tertiary structures of apo-calmodulin evolve in a synchronous way, indicating the absence in the unfolding pathway of molten-globule state sufficiently stable to affect transition curves. From SANS experiments, at 85 °C, apo-calmodulin adopts a polymer chain conformation with some residual local structures. After cooling down, apo-calmodulin recovers a compact state, with a secondary structure close to the native one but with a higher radius of gyration and a different tyrosine environment. In fact on a timescale of few minutes, heat denaturation of apo-calmodulin is partially reversible, but on a time scale of hours (for SANS experiments), the long exposure to heat may lead to a non-reversibility due to some chemical perturbation of the protein. In fact, from Mass Spectrometry measurements, we got evidence of dehydration and deamidation of heated apo-calmodulin. 相似文献
15.
Structural and hydration properties of the partially unfolded states of the prion protein 总被引:1,自引:0,他引:1
下载免费PDF全文

Misfolding and aggregation of the prion protein (PrP) is responsible for the development of transmissible spongiform encephalopathies (TSE). To gain insights into possible aggregation-prone intermediate states, we construct the free energy surface of the C-terminal globular domain of the PrP from enhanced sampling of replica exchange molecular dynamics. This cellular domain is characterized by three helices H1-H3 and a small beta-sheet. In agreement with experimental studies, the partially unfolded states display a stable core built from the central portions of helices H2 and H3 and a high mobility of helix H1 from the core. Among all identified conformational basins, a marginally populated state appears to be a very good candidate for aggregation. This intermediate is stabilized by four TSE-sensitive key interactions, displays a longer helix H1 with both a dry and solvated surface, and is featured by a significant detachment of helix H1 from the PrP-core. 相似文献
16.
In protein, conformational changes are often crucial for function but not easy to observe. Two functionally relevant conformational intermediate states of photosynthetic reaction center protein (RCs) are trapped and characterized at low temperature. RCs frozen in the dark do not allow electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B). In contrast, RCs frozen under illumination in the product (P(+)Q(A)Q(B)(-)) state, with the oxidized electron donor, P(+), and reduced Q(B)(-), return to the ground state at cryogenic temperature in a conformation that allows a high yield of Q(B) reduction. Thus, RCs frozen under illumination are found to be trapped above the ground state in a conformation that allows product formation. When the temperature is raised above 120 K, the protein relaxes to an inactive conformation which is different from the RCs frozen in the dark. The activation energy for this change is 87 +/- 8 meV, and the active and inactive states differ in energy by only 16 +/- 3 meV. Thus, there are several conformational substates along the reaction coordinate with different transition temperatures. The ground state spectra of the RCs in active and inactive conformations report differences in the intraprotein electrostatic field, demonstrating that the dipole or charge distribution has changed. In addition, the electrochromic shift associated with the Q(A)(-) to Q(B) electron transfer at low temperature was characterized. The electron-transfer rate from Q(B)(-) to P(+) was measured at cryogenic temperature and is similar to the rate at room temperature, as expected for an exothermic, electron tunneling reaction in RCs. 相似文献
17.
The role of side-chain entropy (SCE) in protein folding has long been speculated about but is still not fully understood. Utilizing a newly developed Monte Carlo method, we conducted a systematic investigation of how the SCE relates to the size of the protein and how it differs among a protein's X-ray, NMR, and decoy structures. We estimated the SCE for a set of 675 nonhomologous proteins, and observed that there is a significant SCE for both exposed and buried residues for all these proteins—the contribution of buried residues approaches ~40% of the overall SCE. Furthermore, the SCE can be quite different for structures with similar compactness or even similar conformations. As a striking example, we found that proteins' X-ray structures appear to pack more “cleverly” than their NMR or decoy counterparts in the sense of retaining higher SCE while achieving comparable compactness, which suggests that the SCE plays an important role in favouring native protein structures. By including a SCE term in a simple free energy function, we can significantly improve the discrimination of native protein structures from decoys. 相似文献
18.
19.
Kyle M Burns Vladimir Sarpe Mike Wagenbach Linda Wordeman David C Schriemer 《Protein science : a publication of the Protein Society》2015,24(8):1313-1324
Water-mediated hydrogen exchange (HX) processes involving the protein main chain are sensitive to structural dynamics and molecular interactions. Measuring deuterium uptake in amide bonds provides information on conformational states, structural transitions and binding events. Increasingly, deuterium levels are measured by mass spectrometry (MS) from proteolytically generated peptide fragments of large molecular systems. However, this bottom-up method has limited spectral capacity and requires a burdensome manual validation exercise, both of which restrict analysis of protein systems to generally less than 150 kDa. In this study, we present a bottom-up HX-MS2 method that improves peptide identification rates, localizes high-quality HX data and simplifies validation. The method combines a new peptide scoring algorithm (WUF, weighted unique fragment) with data-independent acquisition of peptide fragmentation data. Scoring incorporates the validation process and emphasizes identification accuracy. The HX-MS2 method is illustrated using data from a conformational analysis of microtubules treated with dimeric kinesin MCAK. When compared to a conventional Mascot-driven HX-MS method, HX-MS2 produces two-fold higher α/β-tubulin sequence depth at a peptide utilization rate of 74%. A Mascot approach delivers a utilization rate of 44%. The WUF score can be constrained by false utilization rate (FUR) calculations to return utilization values exceeding 90% without serious data loss, indicating that automated validation should be possible. The HX-MS2 data confirm that N-terminal MCAK domains anchor kinesin force generation in kinesin-mediated depolymerization, while the C-terminal tails regulate MCAK-tubulin interactions. 相似文献
20.
A measure of conformational entropy change during thermal protein unfolding using neutron spectroscopy
下载免费PDF全文

Fitter J 《Biophysical journal》2003,84(6):3924-3930
Thermal unfolding of proteins at high temperatures is caused by a strong increase of the entropy change which lowers Gibbs free energy change of the unfolding transition (DeltaG(unf) = DeltaH - TDeltaS). The main contributions to entropy are the conformational entropy of the polypeptide chain itself and ordering of water molecules around hydrophobic side chains of the protein. To elucidate the role of conformational entropy upon thermal unfolding in more detail, conformational dynamics in the time regime of picoseconds was investigated with neutron spectroscopy. Confined internal structural fluctuations were analyzed for alpha-amylase in the folded and the unfolded state as a function of temperature. A strong difference in structural fluctuations between the folded and the unfolded state was observed at 30 degrees C, which increased even more with rising temperatures. A simple analytical model was used to quantify the differences of the conformational space explored by the observed protein dynamics for the folded and unfolded state. Conformational entropy changes, calculated on the basis of the applied model, show a significant increase upon heating. In contrast to indirect estimates, which proposed a temperature independent conformational entropy change, the measurements presented here, demonstrated that the conformational entropy change increases with rising temperature and therefore contributes to thermal unfolding. 相似文献