首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FADD is required for multiple signaling events downstream of the receptor Fas.   总被引:13,自引:0,他引:13  
To identify essential components of the Fas-induced apoptotic signaling pathway, Jurkat T lymphocytes were chemically mutagenized and selected for clones that were resistant to Fas-induced apoptosis. We obtained five cell lines that contain mutations in the adaptor FADD. All five cell lines did not express FADD by immunoblot analysis and were completely resistant to Fas-induced death. Complementation of the FADD mutant cell lines with wild-type FADD restored Fas-mediated apoptosis. Fas activation of caspase-2, caspase-3, caspase-7, and caspase-8 and the proteolytic cleavage of substrates such as BID, protein kinase Cdelta, and poly(ADP-ribose) polymerase were completely defective in the FADD mutant cell lines. In addition, Fas activation of the stress kinases p38 and c-Jun NH2 kinase and the generation of ceramide in response to Fas ligation were blocked in the FADD mutant cell lines. These data indicate that FADD is essential for multiple signaling events downstream of Fas.  相似文献   

2.
Anaplasma phagocytophilum infects human neutrophils and inhibits the intrinsic pathway of spontaneous neutrophil apoptosis by protecting mitochondrial membrane integrity. In the present study, we investigated the molecular signalling of the extrinsic pathway and the interaction between the intrinsic and extrinsic pathways in the inhibition of spontaneous human neutrophil apoptosis by A. phagocytophilum. Cell surface Fas clustering during spontaneous neutrophil apoptosis was significantly blocked by A. phagocytophilum infection. The cleavage of pro-caspase 8, caspase 8 activation and the cleavage of Bid, which links the intrinsic and extrinsic pathways, in the extrinsic pathway of spontaneous neutrophil apoptosis were inhibited by A. phagocytophilum infection. Inhibition of this pathway was active as the cleavage of pro-caspase 8 and Bid in anti-Fas-induced neutrophil apoptosis was also inhibited by A. phagocytophilum infection. Likewise, A. phagocytophilum infection inhibited the pro-apoptotic Bax translocation to mitochondria, activation of caspase 9, the initiator caspase in the intrinsic pathway, and the degradation of a potent caspase inhibitor, X-chromosome-linked inhibitor of apoptosis protein (XIAP), during spontaneous neutrophil apoptosis. These data point to a novel mechanism induced by A. phagocytophilum involving both extrinsic and intrinsic pathways to ensure to delay the apoptosis of host neutrophils.  相似文献   

3.
Lawrence CP  Chow SC 《FEBS letters》2005,579(28):6465-6472
Activation-induced cell death (AICD) in activated T lymphocytes is largely mediated by Fas/Fas ligand (FasL) interaction. The cytoplasmic adaptor molecule Fas-associated death domain protein (FADD) plays an essential role in the apoptotic signalling of the Fas death pathway. In the present study, we observed that FADD deficient (FADD(-/-)) Jurkat T cells undergo AICD to a similar extent as wild-type cells. AICD in wild-type Jurkat T cells is via apoptosis, whereas it is non-apoptotic in FADD(-/-) cells. The latter took up propidium iodide, exhibit a loss in mitochondrial membrane potential and have no detectable cleavage products of caspase-8 or -3 activation, suggesting that these cells die by necrosis. Wild-type Jurkat T cells undergo apoptosis when incubated with recombinant FasL and Trail but not with TNF-alpha. In contrast, FADD(-/-) Jurkat T cells are resistant to FasL and Trail but die of necrosis when incubated with TNF-alpha. We showed that neutralising anti-TNF-alpha blocked AICD as well as TNF-alpha-induced necrosis in FADD(-/-) Jurkat T cells. Furthermore, down regulating the receptor interacting protein, RIP, with geldanamycin treatment, which is essential for TNF-alpha signalling, markedly inhibited AICD in FADD(-/-) Jurkat T cells. In addition, caspase-8-deficient Jurkat T cells are resistant to Fas- and TNF-alpha-induced cell death. Taken together, our results suggest that a deficiency in FADD and not caspase-8 or the inhibition of the Fas signalling pathway sensitises Jurkat T cells to TNF-alpha-dependent necrosis during AICD.  相似文献   

4.
Prolonged ERK/MAPK activation has been implicated in neuronal cell death in vitro and in vivo. We found that HEK293 cells, recently reported to express neuronal markers, are exquisitely sensitive to long term ERK stimulation. Activation of an inducible form of Raf-1 (Raf-1:ER) in HEK293 cells induced massive apoptosis characterized by DNA degradation, loss of plasma membrane integrity and PARP cleavage. Cell death required MEK activity and protein synthesis and occurred via the death receptor pathway independently of the mitochondrial pathway. Accordingly, prolonged ERK stimulation activated caspase 8 and strongly potentiated Fas signaling. The death receptor adaptator FADD was found to be rapidly induced upon ERK activation. However using RNA interference and ectopic expression, we demonstrated that neither FADD nor Fas were necessary for caspase 8 activation and cell death. These findings reveal that prolonged ERK/MAPK stimulation results in caspase 8 activation and cell death. This work was supported by grant from Association pour la Recherche sur le Cancer (CNRS6543/ARC). S. Cagnol is supported by a fellowship from the Ligue Nationale contre le Cancer.  相似文献   

5.
Trimerization of the Fas receptor (CD95, APO-1), a membrane bound protein, triggers cell death by apoptosis. The main death pathway activated by Fas receptor involves the adaptor protein FADD (for Fas-associated death domain) that connects Fas receptor to the caspase cascade. Anticancer drugs have been shown to enhance both Fas receptor and Fas ligand expression on tumor cells. The contribution of Fas ligand-Fas receptor interactions to the cytotoxic activity of these drugs remains controversial. Here, we show that neither the antagonistic anti-Fas antibody ZB4 nor the Fas-IgG molecule inhibit drug-induced apoptosis in three different cell lines. The expression of Fas ligand on the plasma membrane, which is identified in untreated U937 human leukemic cells but remains undetectable in untreated HT29 and HCT116 human colon cancer cell lines, is not modified by exposure to various cytotoxic agents. These drugs induce the clustering of Fas receptor, as observed by confocal laser scanning microscopy, and its interaction with FADD, as demonstrated by co-immunoprecipitation. Overexpression of FADD by stable transfection sensitizes tumor cells to drug-induced cell death and cytotoxicity, whereas down-regulation of FADD by transient transfection of an antisense construct decreases tumor cell sensitivity to drug-induced apoptosis. These results were confirmed by transient transfection of constructs encoding either a FADD dominant negative mutant or MC159 or E8 viral proteins that inhibit the FADD/caspase-8 pathway. These results suggest that drug-induced cell death involves the Fas/FADD pathway in a Fas ligand-independent fashion.  相似文献   

6.
The Fas receptor (FasR) is an important physiological mediator of apoptosis in various tissues and cells. However, there are also many FasR-expressing cell types that are normally resistant to apoptotic signaling through this receptor. The mitogen-activated protein kinase (MAPK) signaling cascade has, apart from being a growth-stimulating factor, lately received attention as an inhibitory factor in apoptosis. In this study, we examined whether MAPK signaling could be involved in protecting FasR-insensitive cells. To this end, we used different approaches to inhibit MAPK signaling in HeLa cells, including treatment with the MAPK kinase inhibitor PD 98059, serum withdrawal, and expression of dominant-interfering MAPK kinase mutant protein. All of these treatments were effective in sensitizing the cells to FasR-induced apoptosis, demonstrating that MAPK indeed is involved in the control of FasR responses. The MAPK-mediated control seemed to occur at or upstream of caspase 8, the initiator caspase in apoptotic FasR responses. Transfection with the constitutively active MAPK kinase abrogated FasR-induced apoptosis also in the presence of cycloheximide, indicating that the MAPK-generated suppression of FasR-mediated apoptotic signaling is protein synthesis independent. In cells insensitive to FasR-induced apoptosis, stimulation of the FasR with an agonistic antibody resulted in significant MAPK activation, which was inhibited by PD 98059. When different cell types were compared, the FasR-mediated MAPK activation seemed proportional to the degree of FasR insensitivity. These results suggest that the FasR insensitivity is likely to be a consequence of FasR-induced MAPK activation, which in turn interferes with caspase activation.  相似文献   

7.
Ligation of the death receptor Fas/CD95 activates an apoptotic cascade and plays critical roles during infectious diseases. Previous work has established that infection with the intracellular parasite Toxoplasma gondii renders cells resistant to multiple inducers of apoptosis. However, the effect of T. gondii on the death receptor pathway is poorly characterized. Here we have determined the impact of the parasite on apoptosis in type I cells that transduce Fas/CD95 engagement via the death receptor pathway without the need of a mitochondrial amplification loop. The results have shown that T. gondii significantly reduced Fas/CD95-triggered apoptosis by impairing activation of the initiator caspase 8. Parasitic infection diminished the cellular amount of procaspase 8, resulting in its decreased recruitment to the death-inducing signalling complex and the impaired activation of effector caspases. Remarkably, downregulation of caspase 8 protein in T. gondii-infected cells also occurred in the absence of Fas/CD95 engagement and was associated with the appearance of non-canonical caspase 8 cleavage fragments. Distinct parasite proteins were associated with caspase 8 and its proteolytic fragments. These findings indicate that T. gondii aberrantly processes and finally degrades the initiator caspase 8, thereby, blocking Fas/CD95-mediated apoptosis which signals independently of the apoptogenic function of host cell mitochondria.  相似文献   

8.
The Helicobacter pylori CagA protein induces profound morphological changes in the host cytoskeleton and cell scattering, but the signalling involved is poorly understood. Pseudomonas aeruginosa also affects host actin cytoskeleton in a variety of ways by injecting the ExoS and ExoT toxins which encode N-terminal GTPase activating protein and C-terminal ADP-ribosyltransferase (ADPRT) activities. In this study we developed a novel coinfection assay to gain new insights into CagA effector protein functions. We found that P. aeruginosa injecting either ExoT or ExoS efficiently prevented the H. pylori-induced scattering phenotype. Both the Rho-GAP and the ADPRT domains of ExoS were needed to block the H. pylori-induced actin cytoskeletal rearrangements, whereas either domain of ExoT was sufficient for this activity. This strategy revealed common pathways subverted by different pathogens, and aided in the definition of signalling cascades that control the CagA-mediated cell scattering and elongation. We identified Crk adapter proteins, Rac1 and H-Ras, but not RhoA or Cdc42, which are the ExoS and/or ExoT targets, as crucial components of the CagA-induced phenotype. In addition, we show that ADP-ribosylation of CrkII by ExoT blocks phosphorylation of CrkII at Y-221, which is also important for the CagA-induced signalling.  相似文献   

9.
TRAIL induces apoptosis in many malignant cell types. In this study, we used the human papilloma virus (HPV) 16 E6 protein as a molecular tool to probe the TRAIL pathway in HCT116 colon carcinoma cells and U2OS osteosarcoma cells. Intriguingly, we found that while E6 protected HCT116 cells from TRAIL, U2OS cells expressing E6 remained sensitive to TRAIL. Furthermore, silencing FADD and procaspase-8 expression with siRNA did not prevent TRAIL-induced apoptosis in U2OS cells. However, siBid provided significant protection from TRAIL, and the cleavage kinetics of Bid and caspase-8 revealed that Bid was cleaved prior to the activation of caspase-8. Cathepsin B activity in U2OS cells was significantly activated shortly after exposure to TRAIL, and the cathepsin B inhibitor, CA074Me, inhibited both TRAIL- and anti-DR5-mediated apoptosis and delayed the cleavage of Bid. These findings suggest that TRAIL activates a pathway dependent on Bid, but largely independent of FADD and caspase-8, in U2OS cells.  相似文献   

10.
To elucidate cytolytic mechanisms in the channel catfish, lysates from catfish lymphoid and fibroblast cell lines were screened by Western blot analysis using a panel of antibodies reactive with components of the mammalian apoptotic pathway. Strong reactivity with three proteins (approximate Mr 70,000, 37,000, and 15,000) was seen using an antibody targeted to mammalian Fas ligand (FasL). The sizes of the two smaller proteins are consistent with their tentative designation as membrane-bound (37,000 Mr) and soluble (15,000 Mr) FasL. Treatments known to induce FasL in mammalian systems (e.g., PMA/calcium ionophore, UV-irradiation) induced expression of the 37,000-Mr protein in catfish T-cell lines. Moreover, expression of the 37,000-Mr protein in clonal T cells was up-regulated by increasing cell density. At the nucleotide level, homologues of Fas receptor (FasR), FADD, and caspase 8 were identified and characterized. These gene products likely constitute the teleost equivalent of the death-inducing signaling complex (DISC). FADD was constitutively expressed in all (T, B, macrophage, and fibroblast) cell lines examined as well as in peripheral blood lymphocytes (PBL), whereas FasR and caspase 8 were expressed in all cell lines except CCO, a FasL-positive fibroblast line. In contrast to FasL, expression of FasR and caspase 8 was inversely proportional to cell density. Collectively these studies identified four membrane-proximal proteins involved in the initiation of apoptosis in channel catfish and suggest that mechanisms of cell-mediated cytotoxicity in teleosts are similar to those used by mammals.  相似文献   

11.
The Fas receptor is a representative death receptor, and the Fas-associated protein with death domain (FADD) is a crucial adapter protein needed to support the Fas receptor’s activity. The Fas–FADD interactions constitute an important signaling pathway that ultimately induces apoptosis or programmed cell death in biological systems. The interactions responsible for this cell-death process are governed by the binding process of the Fas ligand to the Fas, followed by the caspase cascade activation. Using a computational approach, the present communication explores certain essential structural aspects of the Fas–FADD death domains and their interfacial interactions.  相似文献   

12.
FADD/MORT1, a signal transducer that can promote cell death or cell growth.   总被引:9,自引:0,他引:9  
FADD/MORT1 is a cytosolic adaptor protein which is critical for signalling from CD95 (Fas/APO-1) and certain other members of the tumour necrosis factor receptor (TNF-R) family (called 'death receptors'). Two protein interaction domains have been identified in FADD/MORT1. The C-terminal 'death domain' is needed for recruitment of FADD/MORT1 to ligated 'death receptors' and the N-terminal 'death effector domain' mediates oligomerisation and activation of caspase-8 zymogens. Caspase-8 activates other cysteine proteases by cleavage and this starts a proteolytic cascade which constitutes the 'point of no return' in apoptosis signalling. Experiments in mice lacking FADD/MORT1 function proved that this adaptor is required for CD95- and TNF-RI-transduced cell death but is dispensable for other pathways to apoptosis. Surprisingly, FADD/MORT1 is also essential for mitogen-induced proliferation of T-lymphocytes. Therapeutic activation of FADD/MORT1 function may be used to kill unwanted cells in cancer or autoimmunity and its suppression may help prevent cell death in certain degenerative disorders.  相似文献   

13.
Rapid elimination of virus-infected cells by apoptosis is an efficient anti-viral strategy. Double-stranded RNA (dsRNA), a viral product, is potently and rapidly apoptogenic in susceptible cells. Caspase 8 plays an important role in the dsRNA-induced apoptosis; however, the mechanisms of caspase 8 activation in response to dsRNA are unknown. We demonstrate here that, in HeLa cells, the dsRNA-triggered activation of caspase 8 is independent of ongoing proteins synthesis (and is, therefore, independent of changes in pro- and anti-apoptotic gene expression) and involves the formation of multiprotein dsRNA-triggered death inducing signaling complexes (dsRNA-DISCs). DsRNA-DISCs contain FADD, TRADD, and caspase 8; however, several experimental approaches suggest that death ligands and death receptors (such as Fas/Apo1 and DR4/Apo2) are not involved in the formation of dsRNA-DISCs.Deceased  相似文献   

14.
Recent evidence suggests clustering of plasma membrane rafts into ceramide-enriched platforms serves as a transmembrane signaling mechanism for a subset of cell surface receptors and environmental stresses (Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001) J. Biol. Chem. 276, 20589-20596; Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E., and Kolesnick, R. (2001) J. Biol. Chem. 276, 23954-23961). Translocation of the secretory form of acid sphingomyelinase (ASMase) into microscopic rafts generates therein the ceramide that drives raft coalescence. This process serves to feed forward Fas activation, with approximately 2% of full caspase 8 activation sufficient for maximal ASMase translocation, leading to death-inducing signaling complex formation within ceramide-rich platforms, and apoptosis. Here we report that treatment of Jurkat T cells with UV-C also induces ASMase translocation into rafts within 1 min, catalyzing sphingomyelin hydrolysis to ceramide and raft clustering. In contrast to Fas, UV-induced ASMase translocation and activation were caspase-independent. Nonetheless, ceramide-rich platforms promoted UV-C-induced death signaling, because ASMase inhibition or raft disruption inhibited apoptosis, improving clonogenic cell survival. These studies thus define two distinct mechanisms for biologically relevant ASMase activation within rafts; a Fas-mediated mechanism dependent upon caspase 8 and FADD, and a UV-induced mechanism independent of caspase activation. Consistent with this notion, genetic depletion or pharmacologic inhibition of caspase 8 or FADD, which render Jurkat cells incapable of sphingolipid signaling and apoptosis upon Fas ligation, did not impair these events upon UV-C stimulation.  相似文献   

15.
Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  相似文献   

16.
Necrotic death pathway in Fas receptor signaling   总被引:12,自引:0,他引:12  
A caspase 8-deficient subline (JB6) of human Jurkat cells can be killed by the oligomerization of Fas-associated protein with death domain (FADD). This cell death process is not accompanied by caspase activation, but by necrotic morphological changes. Here, we show that the death effector domain of FADD is responsible for the FADD-mediated necrotic pathway. This process was accompanied by a loss of mitochondrial transmembrane potential (DeltaPsim), but not by the release of cytochrome c from mitochondria. Pyrrolidine dithiocarbamate, a metal chelator and antioxidant, efficiently inhibited the FADD-induced reduction of DeltaPsim and necrotic cell death. When human Jurkat, or its transformants, expressing mouse Fas were treated with Fas ligand or anti-mouse Fas antibodies, the cells died, showing characteristics of apoptosis. A broad caspase inhibitor (z-VAD-fmk) blocked the apoptotic morphological changes and the release of cytochrome c. However, the cells still died, and this cell death process was accompanied by a strong reduction in DeltaPsim, as well as necrotic morphological changes. The presence of z-VAD-fmk and pyrrolidine dithiocarbamate together blocked cell death, suggesting that both apoptotic and necrotic pathways can be activated through the Fas death receptor.  相似文献   

17.
The adaptor protein FADD/MORT1 is essential for apoptosis induced by 'death receptors', such as Fas (APO-1/CD95), mediating aggregation and autocatalytic activation of caspase-8. Perhaps surprisingly, FADD and caspase-8 are also critical for mitogen-induced proliferation of T lymphocytes. We generated novel monoclonal antibodies specific for mouse FADD and caspase-8 to investigate whether cellular responses, apoptosis or proliferation, might be explained by differences in post-translational modification and subcellular localisation of these proteins. During both apoptosis signalling and mitogenic activation, FADD and caspase-8 aggregated in multiprotein complexes and formed caps at the plasma membrane but they did not colocalise with lipid rafts. Interestingly, mitogenic stimulation, but not Fas ligation, induced a unique post-translational modification of FADD. These different modifications may determine whether FADD and caspase-8 induce cell death or proliferation.  相似文献   

18.
The adaptor protein FADD directly, or indirectly via another adaptor called TRADD, recruits caspase 8 to death receptors of the tumor necrosis factor receptor family. Consequentially, a dominant-negative mutant (FADD-DN, which consists only of the FADD death domain) that binds to receptors but cannot recruit caspase 8 has been widely used to inhibit apoptosis by various stimuli that work via death receptors. Here, we show that FADD-DN also has another cell type- and cancer-dependent activity because it induces apoptosis of normal human prostate epithelial cells but not normal prostate stromal cells or prostate cancer cells. This activity is independent of FADD-DN's ability to bind to three known interacting proteins, Fas, TRADD or RIP suggesting that it is distinct from FADD's functions at activated death receptors. FADD-DN induces caspase activation in normal epithelial cells as demonstrated using a Fluorescence Resonance Energy Transfer assay that measures caspase activity in individual living cells. However, caspase-independent pathways are also implicated in FADD-DN-induced apoptosis because caspase inhibitors were inefficient at preventing prostate cell death. Therefore, the death domain of FADD has a previously unrecognized role in cell survival that is epithelial-specific and defective in cancer cells. This FADD-dependent signaling pathway may be important in prostate carcinogenesis.  相似文献   

19.
The Epstein-Barr virus (EBV) oncoprotein latent membrane protein 1 (LMP1) is thought to act as the major transforming protein in various cell types, by rerouting the tumor necrosis factor receptor family signaling pathway. Despite this implication in EBV-associated transformation of cells, LMP1 toxicity is a well-known but poorly studied feature, perhaps because it contradicts its role in transformation. We show that LMP1 physiological levels are very heterogeneous and that the highest levels of LMP1 correlate with Fas overexpression and spontaneous apoptosis in lymphoblastoid cell lines (LCLs). To understand the cytotoxic effect of LMP1 in LCLs, we cloned wild-type LMP1 into a doxycycline double-inducible episomal vector pRT-1, with a truncated version of NGFR as a surrogate marker of inducibility. We found that LMP1 overexpression induced apoptosis in LCL B cells, as shown by annexin V labeling, sub-G(1) peak, and poly(ADP ribose) polymerase cleavage. Knocking down Fas expression by small interfering RNA abolished LMP1-induced apoptosis. The absence of detectable levels of Fas ligand mRNA suggested a ligand-independent activation of Fas. LMP1 induced Fas overexpression with its relocalization in lipid raft microdomains of the membrane. Fas immunoprecipitation detected FADD (Fas-associated death domain protein) and caspase 8, suggesting a Fas-dependent formation of the death-inducing signaling complex. Caspases 8, 9, 3, and 7 were activated by LMP1. Caspase 8 activation was associated with BID cleavage and truncated-BID mitochondrial relocalization, consistent with type II apoptosis. Therefore, our results are in agreement with a model where LMP1-dependent NF-kappaB activation induces Fas overexpression and autoactivation that could overwhelm the antiapoptotic effect of NF-kappaB, revealing an ambivalent function of LMP1 in cell survival and programmed cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号