首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence has accumulated that specific retinoids impact on developmental and biochemical processes influencing mammalian adiposity including adipogenesis, lipogenesis, adaptive thermogenesis, lipolysis and fatty acid oxidation in tissues. Treatment with retinoic acid, in particular, has been shown to reduce body fat and improve insulin sensitivity in lean and obese rodents by enhancing fat mobilization and energy utilization systemically, in tissues including brown and white adipose tissues, skeletal muscle and the liver. Nevertheless, controversial data have been reported, particularly regarding retinoids' effects on hepatic lipid and lipoprotein metabolism and blood lipid profile. Moreover, the molecular mechanisms underlying retinoid effects on lipid metabolism are complex and remain incompletely understood. Here, we present a brief overview of mammalian lipid metabolism and its control, introduce mechanisms through which retinoids can impact on lipid metabolism, and review reported activities of retinoids on different aspects of lipid metabolism in key tissues, focusing on retinoic acid. Possible implications of this knowledge in the context of the management of obesity and the metabolic syndrome are also addressed. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.  相似文献   

2.
The requirement of the developing mammalian embryo for retinoic acid is well established. Retinoic acid, the active form of vitamin A, can be generated from retinol and retinyl ester obtained from food of animal origin, and from carotenoids, mainly β-carotene, from vegetables and fruits. The mammalian embryo relies on retinol, retinyl ester and β-carotene circulating in the maternal bloodstream for its supply of vitamin A. The maternal-fetal transfer of retinoids and carotenoids, as well as the metabolism of these compounds in the developing tissues are still poorly understood. The existing knowledge in this field has been summarized in this review in reference to our basic understanding of the transport and metabolism of retinoids and carotenoids in adult tissues. The need for future research on the metabolism of these essential lipophilic nutrients during development is highlighted. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

3.
The NMDA receptor (NMDAR) family of l-glutamate receptors are well known to have diverse roles in CNS function as well as in various neuropathological and psychiatric conditions. Until recently, the types of agents available to pharmacologically regulate NMDAR function have been quite limited in terms of mechanism of action and subtype selectivity. This has changed significantly in the past two years. The purpose of this review is to summarize the many drug classes now available for modulating NMDAR activity. Previously, this included competitive antagonists at the l-glutamate and glycine binding sites, high and low affinity channel blockers, and GluN2B-selective N-terminal domain binding site antagonists. More recently, we and others have identified new classes of NMDAR agents that are either positive or negative allosteric modulators (PAMs and NAMs, respectively). These compounds include the pan potentiator UBP646, the GluN2A-selective potentiator/GluN2C and GluN2D inhibitor UBP512, the GluN2D-selective potentiator UBP551, the GluN2C/GluN2D-selective potentiator CIQ as well as the new NMDAR-NAMs such as the pan-inhibitor UBP618, the GluN2C/GluN2D-selective inhibitor QZN46 and the GluN2A inhibitors UBP608 and TCN201. These new agents do not bind within the l-glutamate or glycine binding sites, the ion channel pore or the N-terminal regulatory domain. Collectively, these new allosteric modulators appear to be acting at multiple novel sites on the NMDAR complex. Importantly, these agents display improved subtype-selectivity and as NMDAR PAMs and NAMs, they represent a new generation of potential NMDAR therapeutics.  相似文献   

4.
The osteoclast variant of the vacuolar H+-ATPase (V-ATPase) is a potential therapeutic target for combating the excessive bone resorption that is involved in osteoporosis. The most potent in a series of synthetic inhibitors based on 5-(5,6-dichloro-2-indolyl)-2-methoxy-2,4-pentadienamide (INDOL0) has demonstrated specificity for the osteoclast enzyme, over other V-ATPases. Interaction of two nitroxide spin-labeled derivatives (INDOL6 and INDOL5) with the V-ATPase is studied here by using the transport-active 16-kDa proteolipid analog of subunit c from the hepatopancreas of Nephrops norvegicus, in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Analogous experiments are also performed with vacuolar membranes from Saccharomyces cerevisiae, in which subunit c of the V-ATPase is replaced functionally by the Nephrops 16-kDa proteolipid. The INDOL5 derivative is designed to optimize detection of interaction with the V-ATPase by EPR. In membranous preparations of the Nephrops 16-kDa proteolipid, the EPR spectra of INDOL5 contain a motionally restricted component that arises from direct association of the indolyl inhibitor with the transmembrane domain of the proteolipid subunit c. A similar, but considerably smaller, motionally restricted population is detected in the EPR spectra of the INDOL6 derivative in vacuolar membranes, in addition to the larger population from INDOL6 in the fluid bilayer regions of the membrane. The potent classical V-ATPase inhibitor concanamycin A at high concentrations induces motional restriction of INDOL5, which masks the spectral effects of displacement at lower concentrations of concanamycin A. The INDOL6 derivative, which is closest to the parent INDOL0 inhibitor, displays limited subtype specificity for the osteoclast V-ATPase, with an IC50 in the 10-nanomolar range.  相似文献   

5.
UPAR is a GPI anchored protein, which is found in both lipid rafts and in more fluid regions of the plasma membrane. We have studied the role of the ligand uPA on uPAR localization and on the composition of the lipid membrane microdomains. We have analyzed the glycosphingolipid environment of uPAR in detergent resistant membrane (DRM) fractions prepared by cell lysis with 1% Triton X-100 and fractionated by sucrose gradient centrifugation obtained from HEK293-uPAR cells. The uPAR specific lipid membrane microdomain has been separated from the total DRM fraction by immunoprecipitation with an anti-uPAR specific antibody under conditions that preserve membrane integrity. We have also tested uPA-induced ERK phosphorylation in the presence of methyl-β-cyclodextrin, which is known to disrupt lipid rafts by sequestering cholesterol from such domains. Our results show that uPAR is partially associated with DRM and this association is increased by ligands, is independent of the catalytic activity of uPA, and is required for intracellular signalling. In the absence of ligands, uPAR experiences a lipid environment very similar to that of total DRM, enriched in sphingomyelin and glycosphingolipids. However, after treatment of cells with uPA or ATF the lipid environment is strongly impoverished of neutral glycosphingolipids.  相似文献   

6.
Although transient receptor potential (TRP) channel biology research has expanded rapidly in recent years, the field is hampered by the widely held, but relatively poorly investigated, belief that most of the pharmacological tools used to investigate TRP channel function may not be particularly selective for their intended targets. The objective of this study was therefore to determine if this was indeed the case by systematically evaluating the effects of three routinely used putative TRP channel antagonists, SKF 96365, flufenamic acid (FF) and 2-aminoethoxydiphenyl borate (2-APB) against one of the most widely expressed CNS receptor subtypes CNS, the human α1β2γ2 GABA(A) receptor. Using whole cell patch-clamp recording to record responses to rapidly applied GABA in the absence and presence of the three putative antagonists in turn we found that SKF 96365 (1-100 μM) and FF (1-100 μM) significantly inhibited GABA responses of recombinant human α1β2γ2 GABA(A) receptor stably expressed in HEK293 cells with IC(50) values of 13.4 ± 5.1 and 1.9 ± 1.4 μM, respectively, suppressing the maximal response to GABA at all concentrations used in a manner consistent with a non-competitive mode of action. SKF 96365 and FF also both significantly reduced desensitisation and prolonged the deactivation kinetics of the receptors to GABA (1mM; P<0.05). 2-APB (10-1000 μM) also inhibited responses to GABA at all concentrations used with an IC(50) value of 16.7 ± 5.4 μM (n=3-5) but had no significant effect on the activation, desensitisation or deactivation kinetics of the GABA responses. Taken together this investigation revealed that these widely utilised TRP channel antagonists display significant 'off-target' effects at concentrations that are routinely used for the study of TRP channel function in numerous biological systems and as such, data which is obtained utilising these compounds should be interpreted with caution.  相似文献   

7.
We have reported that the rat liver lipophilic extract (LE) synergized with insulin to induce Gck and Srebp-1c in primary rat hepatocytes. After identification of retinol and retinal in LE, only their effects in the absence or presence of insulin on Gck, but not that on Srebp-1c, were investigated subsequently. The retinoid effects on the Srebp-1c expression and the activation of its promoter were examined with real-time PCR and reporter gene assays, respectively. In primary hepatocytes, retinal and retinoic acid (RA) synergized with insulin to induce Srebp-1c expression. This induction was followed by the elevation of its target gene, fatty acid synthase. Activation of retinoid X receptor, but not retinoic acid receptor, was responsible for the induction of Srebp-1c expression. RA, but not retinal, also induced Srebp-1c expression in a dose dependent manner in INS-1 cells. The RA responsive elements in Srebp-1c promoter were determined as previously identified two liver X receptor elements responsible for mediating insulin action. We conclude that retinoids regulate hepatic Srebp-1c expression through activation of retinoid X receptor. The RA- and insulin-induced Srebp-1c expression converged at the same sites in its promoter, indicating the roles of vitamin A in regulation of hepatic gene expression.  相似文献   

8.
Several analytical methods have been used to determine whether ligands bind to bovine beta-lactoglobulin (betaLG). The most common methods are based on fluorescence quenching. We have miniaturised this method from a quartz cell to a 96-well plate. The miniaturisation was evaluated using retinol. The binding constants between the two methods demonstrated a good correlation. The 96-well plate method is much faster and allows many references to be used in the same analysis. The miniaturised method was used to study the binding of three different ligands (4-HPR, arotinoid, warfarinyl palmitate) modelled to bind to betaLG. The binding data showed that all of these ligands bound to betaLG. The method was further used to demonstrate that reindeer betaLG could also bind the four ligands in the same way as bovine betaLG. Because one aim is to use bovine and reindeer betaLG as a binder molecule for aliments in e.g. functional food or for drugs, the influence of pH was also studied and demonstrated that short-term acidic conditions had only a slight effect on the binding properties.  相似文献   

9.
A survey of leaf surface constituents in the family Lamiaceae using HPLC with diode array detection revealed the presence of two characteristic phenolic compounds in many species. The distribution of these phenolics in the Lamiaceae was found to be of taxonomic significance, as they were present in the great majority of species investigated for the subfamily Nepetoideae, including representatives of the well-known genera of culinary herbs, mint, rosemary, sage, thyme and basil. In contrast, they were absent from species of the other subfamilies of Lamiaceae studied and from the related families Verbenaceae, Scrophulariaceae, Acanthaceae and Buddlejaceae. The compounds were isolated from Plectranthus crassus and identified by NMR spectroscopy as the known caffeic acid esters (Z,E)-[2-(3,5-dihydroxyphenyl)ethenyl] 3-(3,4-dihydroxyphenyl)-2-propenoate and (Z,E)-[2-(3,4-dihydroxyphenyl)ethenyl] 3-(3,4-dihydroxyphenyl)-2-propenoate, for which the trivial names nepetoidins A and B are proposed. The presence of this pair of caffeic acid esters adds another character to the chemical, palynological and embryological features distinguishing the Nepetoideae from the other subfamilies of Lamiaceae and related families, and supports the view that the Nepetoideae are a specialised and monophyletic group within the family. Nepetoidin B was shown to have a greater antioxidant activity than gallic, rosmarinic and caffeic acids, and showed activity as an insect phagostimulant. Both compounds were antifungal.  相似文献   

10.
11.
12.
Exogenous and endogenous cannabinoids play an important role in modulating the release of neurotransmitters in hippocampal excitatory and inhibitory networks, thus having profound effect on higher cognitive and emotional functions such as learning and memory. In this study we have studied the effect of cannabinoid agonists on the potassium depolarization-evoked [(3)H]GABA release from hippocampal synaptosomes in the wild-type (WT) and cannabinoid 1 receptor (CB(1)R)-null mutant mice. All tested cannabinoid agonists (WIN55,212-2, CP55,940, HU-210, 2-arachidonoyl-glycerol, 2-AG; delta-9-tetra-hydrocannabinol, THC) inhibited [(3)H]GABA release in WT mice with the following rank order of agonist potency: HU-210>CP55,490>WIN55,212-2>2-AG>THC. By contrast, 2-AG and THC displayed the greatest efficacy eliciting almost complete inhibition of evoked [(3)H]GABA efflux, whereas the maximal inhibition obtained by HU-210, CP55,490, and WIN55,212-2 were less, eliciting not more than 40% inhibition. The inhibitory effect of WIN55,212-2, THC and 2-AG on evoked [(3)H]GABA efflux was antagonized by the CB(1) receptor inverse agonist AM251 (0.5 μM) in the WT mice. In the CB(1)R knockout mice the inhibitory effects of all three agonists were attenuated. In these mice, AM251 did not antagonize, but further reduced the [(3)H]GABA release in the presence of the synthetic agonist WIN55,212-2. By contrast, the concentration-dependent inhibitory effects of THC and 2-AG were partially antagonized by AM251 in the absence of CB(1) receptors. Finally, the inhibition of evoked [(3)H]GABA efflux by THC and 2-AG was also partially attenuated by AM630 (1 μM), the CB(2) receptor-selective antagonist, both in WT and CB(1) knockout mice. Our data prove the involvement of CB(1) receptors in the effect of exo- and endocannabinoids on GABA efflux from hippocampal nerve terminals. In addition, in the effect of the exocannabinoid THC and the endocannabinoid 2-AG, non-CB(1), probably CB(2)-like receptors are also involved.  相似文献   

13.

Background

Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.

Methods

J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.

Results

ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.

Conclusions

Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.

General significance

ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.  相似文献   

14.
Human populations are increasingly exposed to a number of environmental pollutants such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and dioxins. These compounds are activators of the aryl hydrocarbon receptor (AhR) that controls the expression of many genes including those for detoxification enzymes. The regulatory mechanisms of AhR are multi-factorial and include phosphorylation by various protein kinases. Significant progress in the research of mitogen-activated protein kinases (MAPKs) has been achieved in the last decade. Isolated reports have been published on the role of MAPKs in AhR functions and vice versa, with activation of MAPKs by AhR ligands. This mini-review summarizes current knowledge on the mutual interactions between MAPKs and AhR. The majority of studies has been done on cancer-derived cell lines that have impaired cell cycle regulation and lacks the complete detoxification apparatus. We emphasize the importance of the future studies that should be done on non-transformed cells to distinguish the role of MAPKs in cancer and normal cells. Primary cultures of human or rodent hepatocytes that are equipped with a fully functional biotransformation battery or xenobiotics-metabolizing extra-hepatic tissues should be the models of choice, as the results in our experiments confirm.  相似文献   

15.
Ribose-modified highly-fluorescent sulfoindocyanine ATP and ADP analogs, 2'(3')-O-Cy3-EDA-AT(D)P, with kinetics similar to AT(D)P, enable myosin and actomyosin ATPase enzymology with single substrate molecules. Stopped-flow studies recording both fluorescence and anisotropy during binding to skeletal muscle myosin subfragment-1 (S1) and subsequent single-turnover decay of steady-state intermediates showed that on complex formation, 2'-O- isomer fluorescence quenched by 5%, anisotropy increased from 0.208 to 0.357, and then decayed with turnover rate k(cat) 0.07 s(-1); however, 3'-O- isomer fluorescence increased 77%, and anisotropy from 0.202 to 0.389, but k(cat) was 0.03 s(-1). Cy3-EDA-ADP.S1 complexes with vanadate (V(i)) were studied kinetically and by time-resolved fluorometry as stable analogs of the steady-state intermediates. Upon formation of the 3'-O-Cy3-EDA-ADP.S1.V(i) complex fluorescence doubled and anisotropy increased to 0.372; for the 2'-O- isomer, anisotropy increased to 0.343 but fluorescence only 6%. Average fluorescent lifetimes of 2'-O- and 3'-O-Cy3-EDA-ADP.S1.V(i) complexes, 0.9 and 1.85 ns, compare with approximately 0.7 ns for free analogs. Dynamic polarization shows rotational correlation times higher than 100 ns for both Cy3-EDA-ADP.S1.V(i) complexes, but the 2'-O-isomer only has also a 0.2-ns component. Thus, when bound, 3'-O-Cy3-EDA-ADP's fluorescence is twofold brighter with motion more restricted and turnover slower than the 2'-O-isomer; these data are relevant for applications of these analogs in single molecule studies.  相似文献   

16.
Calmodulin (CaM) is a ubiquitous Ca2 + receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.  相似文献   

17.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. The NBD group of acyl chain labeled NBD lipids is known to loop up to the membrane interface in fluid phase membranes. However, the organization of these lipids in gel phase membranes is not resolved. In this paper, we monitored the influence of the membrane phase state on the looping up behavior of acyl chain labeled NBD lipids utilizing red edge excitation shift (REES) and other sensitive fluorescence approaches. Interestingly, our REES results indicate that NBD group of lipids, which are labeled at the fatty acyl region, resides in the more hydrophobic region in gel phase membranes, and complete looping of the NBD group occurs only in the fluid phase. This is supported by other fluorescence parameters such as polarization and lifetime. Taken together, our results demonstrate that membrane packing, which depends on temperature and the phase state of the membrane, significantly affects the localization of acyl chain labeled NBD lipids. In view of the wide ranging use of NBD-labeled lipids in cell and membrane biology, these results could have potentially important implications in future studies involving these lipids as tracers.  相似文献   

18.
A role for retinoic acid in regulating the regeneration of deer antlers   总被引:14,自引:0,他引:14  
Deer antlers are the only mammalian organs that can be repeatedly regenerated; each year, these complex structures are shed and then regrow to be used for display and fighting. To date, the molecular mechanisms controlling antler regeneration are not well understood. Vitamin A and its derivatives, retinoic acids, play important roles in embryonic skeletal development. Here, we provide several lines of evidence consistent with retinoids playing a functional role in controlling cellular differentiation during bone formation in the regenerating antler. Three receptors (alpha, beta, gamma) for both the retinoic acid receptor (RAR) and retinoid X receptor (RXR) families show distinct patterns of expression in the growing antler tip, the site of endochondral ossification. RAR alpha and RXR beta are expressed in skin ("velvet") and the underlying perichondrium. In cartilage, which is vascularised, RXR beta is specifically expressed in chondrocytes, which express type II collagen, and RAR alpha in perivascular cells, which also express type I collagen, a marker of the osteoblast phenotype. High-performance liquid chromatography analysis shows significant amounts of Vitamin A (retinol) in antler tissues at all stages of differentiation. The metabolites all-trans-RA and 4-oxo-RA are found in skin, perichondrium, cartilage, bone, and periosteum. The RXR ligand, 9-cis-RA, is found in perichondrium, mineralised cartilage, and bone. To further define sites of RA synthesis in antler, we immunolocalised retinaldehyde dehydrogenase type 2 (RALDH-2), a major retinoic acid-generating enzyme. RALDH-2 is expressed in the skin and perichondrium and in perivascular cells in cartilage, although chondroprogenitors and chondrocytes express very low levels. At sites of bone formation, differentiated osteoblasts which express the bone-specific protein osteocalcin express high levels of RALDH2. The effect of RA on antler cell differentiation was studied in vitro; all-trans-RA inhibits expression of the chondrocyte phenotype, an effect that is blocked by addition of the RAR antagonist Ro41-5253. In monolayer cultures of mesenchymal progenitor cells, all-trans-RA increases the expression of alkaline phosphatase, a marker of the osteoblastic phenotype. In summary, this study has shown that antler tissues contain endogenous retinoids, including 9-cis RA, and the enzyme RALDH2 that generates RA. Sites of RA synthesis in antler correspond closely with the localisation of cells which express receptors for these ligands and which respond to the effects of RA.  相似文献   

19.
Expression of the farnesoid X receptor (FXR; NR1H4) is limited to the liver, intestine, kidney, and adrenal gland. However, the role of FXR in the latter two organs is unknown. In the current study, we performed microarray analysis using RNA from H295R cells infected with constitutively active FXR. Several putative FXR target genes were identified, including the organic solute transporters alpha and beta (OSTalpha and OSTbeta). Electromobility shift assays and promoter-reporter studies identified functional farnesoid X receptor response elements (FXREs) in the promoters of both human genes. These FXREs are conserved in both mouse genes. Treatment of wild-type mice with 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chloro-stilben-4-yl)-oxymethyl-5-isopropyl-isoxazole (GW4064), a synthetic FXR agonist, induced OSTalpha and OSTbeta mRNAs in the intestine and kidney. Both mRNAs were also induced when wild-type, but not FXR-deficient (FXR-/-), adrenals were cultured in the presence of GW4064. OSTalpha and OSTbeta mRNA levels were also induced in the adrenals and kidneys of wild-type, but not FXR-/-, mice after the increase of plasma bile acids in response to the hepatotoxin alpha-naphthylisothiocyanate. Finally, overexpression of human OSTalpha and OSTbeta facilitated the uptake of conjugated chenodeoxycholate and the activation of FXR target genes. These results demonstrate that OSTalpha and OSTbeta are novel FXR target genes that are expressed in the adrenal gland, kidney, and intestine.  相似文献   

20.
Diverse actions of retinoid receptors in cancer prevention and treatment   总被引:1,自引:0,他引:1  
Retinoids (retinol [vitamin A] and its biologically active metabolites) are essential signaling molecules that control various developmental pathways and influence the proliferation and differentiation of a variety of cell types. The physiological actions of retinoids are mediated primarily by the retinoic acid receptors alpha, beta, and gamma (RARs) and rexinoid receptors alpha, beta, and gamma. Although mutations in RARalpha, via the PML-RARalpha fusion proteins, result in acute promyelocytic leukemia, RARs have generally not been reported to be mutated or part of fusion proteins in carcinomas. However, the retinoid signaling pathway is often compromised in carcinomas. Altered retinol metabolism, including low levels of lecithin:retinol acyl trasferase and retinaldehyde dehydrogenase 2, and higher levels of CYP26A1, has been observed in various tumors. RARbeta(2) expression is also reduced or is absent in many types of cancer. A greater understanding of the molecular mechanisms by which retinoids induce cell differentiation, and in particular stem cell differentiation, is required in order to solve the issue of retinoid resistance in tumors, and thereby to utilize RA and synthetic retinoids more effectively in combination therapies for human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号