首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Circadian rhythms in plants are relatively robust, as they are maintained both in constant light of high fluence rates and in darkness. Plant circadian clocks exhibit the expected modes of photoentrainment, including period modulation by ambient light and phase resetting by brief light pulses. Several of the phytochrome and cryptochrome photoreceptors responsible have been studied in detail. This review concentrates on the resulting patterns of entrainment and on the multiple proposed mechanisms of light input to the circadian oscillator components.  相似文献   

8.
9.
Liu C  Reppert SM 《Neuron》2000,25(1):123-128
The master clock in the suprachiasmatic nuclei (SCN) is composed of multiple, single-cell circadian clocks. We test the postulate that these individual "clock cells" can be synchronized to each other by the inhibitory transmitter gamma-aminobutyric acid (GABA). For these experiments, we monitored the firing rate rhythm of individual clock cells on fixed multielectrode plates in culture and tested the effects of GABA. The results show that the daily variation in responsiveness of the SCN to phase-shifting agents is manifested at the level of individual neurons. Moreover, GABA, acting through A-type receptors, can both phase shift and synchronize clock cells. We propose that GABA is an important synchronizer of SCN neurons in vivo.  相似文献   

10.
Under constant conditions, the circadian bioluminescent glow rhythm in populations (10(5) cells) of Gonyaulax polyedra is accurate to within 2 min/day. On successive days following the transfer to constant conditions, however, the glow exhibits a progressively broader waveform, implying that individual clocks in the population are drifting out of synchrony. Analysis of the glow waveform suggests that the standard deviation in circadian period among individual clocks is about 18 min and that the period of a given clock varies by less than this from one day to the next.  相似文献   

11.
Insects display an impressive variety of daily rhythms, which are most evident in their behaviour. Circadian timekeeping systems that generate these daily rhythms of physiology and behaviour all involve three interacting elements: the timekeeper itself (i.e. the clock), inputs to the clock through which it entrains and otherwise responds to environmental cues such as light and temperature, and outputs from the clock through which it imposes daily rhythms on various physiological and behavioural parameters. In insects, as in other animals, cellular clocks are embodied in clock neurons capable of sustained autonomous circadian rhythmicity, and those clock neurons are organized into clock circuits. Drosophila flies spend their entire lives in small areas near the ground, and use their circadian brain clock to regulate daily rhythms of rest and activity, so as to organize their behaviour appropriately to the daily rhythms of their local environment. Migratory locusts and butterflies, on the other hand, spend substantial portions of their lives high up in the air migrating long distances (sometimes thousands of miles) and use their circadian brain clocks to provide time-compensation to their sun-compass navigational systems. Interestingly, however, there appear to be substantial similarities in the cellular and network mechanisms that underlie circadian outputs in all insects.  相似文献   

12.
The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development.  相似文献   

13.
Winding up the cyanobacterial circadian clock   总被引:1,自引:0,他引:1  
The endogenous circadian clock of the cyanobacterium Synechococcus elongatus controls many cellular processes and confers an adaptive advantage on this organism in a competitive environment. To be advantageous, this internal biological oscillator must be reset daily to remain in synchrony with its environment and to transduce temporal information to control behaviors at appropriate times of day. Recent studies have discovered new components of these input and output pathways of the clock that help to 'wind up' our understanding of the clock system as a whole. Here we review the mechanisms by which S. elongatus maintains internal time, discuss how external stimuli affect this oscillation, and evaluate the mechanisms underlying circadian controlled cellular events.  相似文献   

14.
Under constant conditions, the circadian bioluminescent glow rhythm in populations (105 cells) ofGonyaulax polyedra is accurate to within 2 min/day. On successive days following the transfer to constant conditions, however, the glow exhibits a progressively broader waveform, implying that individual clocks in the population are drifting out of synchrony. Analysis of the glow waveform suggests that the standard deviation in circadian period among individual clocks is about 18 min and that the period of a given clock varies by less than this from one day to the next.  相似文献   

15.
生物钟的基因调控   总被引:3,自引:0,他引:3  
Du YZ  Tong J 《生理科学进展》2002,33(4):343-345
从细菌到哺乳动物的大多数生物都存在分子时钟,也就是生物钟。它的存在使生物的生理,生化,行为表现出以24小时为周期的节律性。本文从基因组成以及节律发生的分子机制等方面,对昼夜节街生物钟进行综述。  相似文献   

16.
A mathematical model was numerically investigated which describes the autooscillatory temporal organization of futile cycles of the carbohydrate branch of energy metabolism. Using an optimization method we found a region in the parametric space of the model in which the circadian oscillation period was practically constant, although the major eight parameters varied in a wide range. Such homeostasis of the period is due to synergistic effects of the four feed-back mechanisms regulating activities of the key enzymes. The result obtained supports the metabolic theory of the circadian cell clock.  相似文献   

17.
Circadian oscillations with a period of about 24h are observed in nearly all living organisms as conspicuous biological rhythms. In this paper, we investigate various kinds of bifurcation phenomena produced in a circadian oscillator model of Drosophila. In Drosophila, it is known that circadian oscillations in the levels of two proteins, PER and TIM, result from the negative feedback exerted by a PER-TIM complex on the expression of the per and tim genes that code for the two proteins. For studying circadian oscillations of proteins in Drosophila, a mathematical model has been proposed. The model cannot only account for regular circadian oscillations in environmental conditions such as constant darkness, but also give rise to more complex oscillatory phenomena including chaos and birhythmicity. By calculating bifurcations using Kawakami's method, we obtain detailed bifurcation diagrams related to stable and unstable invariant sets, and identify parameter regions in which the model generates complex oscillations as well as regular circadian oscillations. Moreover, we study bifurcations observed in the model incorporating the effect on a light-dark (LD) cycle and show that the waveform of the periodic variation in the light-induced parameter has a marked influence on the global bifurcation structure or the type of dynamic behavior resulting from the forcing term of the circadian oscillator by the LD cycles.  相似文献   

18.
A circadian clock, with physiological characteristics similar to those of eukaryotes, functions in the photosynthetic prokaryote, cyanobacteria. The molecular mechanism of this clock has been efficiently dissected using a luciferase reporter gene that reports the status of the clock. A circadian clock gene cluster, kaiABC, has been cloned via rhythm mutants of cyanobacterium, Synechococcus, and many clock mutations mapped to the three kai genes. Although kai genes do not share any homology with clock genes so far identified in eukaryotes, analysis of their expression suggests that a negative feedback control of kaiC expression by KaiC generates the circadian oscillation and that KaiA functions as a positive factor to sustain this oscillation. BioEssays 22:10-15, 2000.  相似文献   

19.
20.
Mathematical model reduction is a long-standing technique used both to gain insight into model subprocesses and to reduce the computational costs of simulation and analysis. A reduced model must retain essential features of the full model, which, traditionally, have been the trajectories of certain state variables. For biological clocks, timing, or phase, characteristics must be preserved. A key performance criterion for a clock is the ability to adjust its phase correctly in response to external signals. We present a novel model reduction technique that removes components from a single-oscillator clock model and discover that four feedback loops are redundant with respect to its phase response behavior. Using a coupled multioscillator model of a circadian clock, we demonstrate that by preserving the phase response behavior of a single oscillator, we preserve timing behavior at the multioscillator level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号