首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
The mouse is the premier genetic model organism for the study of disease and development. We describe the establishment of a mouse T helper cell type 1 (T(H)1) protein expression library that provides direct access to thousands of recombinant mouse proteins, in particular those associated with immune responses. The advantage of a system based on the combination of large cDNA expression libraries with microarray technology is the direct connection of the DNA sequence information from a particular clone to its recombinant, expressed protein. We have generated a mouse T(H)1 expression cDNA library and used protein arrays of this library to characterize the specificity and cross-reactivity of antibodies. Additionally, we have profiled the autoantibody repertoire in serum of a mouse model for systemic lupus erythematosus on these protein arrays and validated the putative autoantigens on highly sensitive protein microarrays.  相似文献   

2.
几种新型生物芯片的研究进展   总被引:17,自引:0,他引:17  
随着生物芯片技术的迅速发展,一些新型生物芯片,如生物电子芯片、凝胶元件微阵列芯片、药物控释芯片、毛细管电泳或层析芯片、PCR芯片及生物传感芯片等应运而生,这些芯片不同于常规的分子微阵列芯片,而是以各种结构微阵列为基础,用于分子杂交与扩增,以检测突变、分析多态性及测序,通过电泳及层析分离生物样品,控制药物释放以治疗疾病,作为生物传感器检测分子行为等,具有分析速度快、效率高、样品消耗少等特点,将成为生命科学与医学领域的新工具.  相似文献   

3.
Evaluation of: Akada J, Kamei S, Ito A et al. A new type of protein chip to detect hepatocellular carcinoma-related autoimmune antibodies in the sera of hepatitis C virus-positive patients. Proteome Sci. 11(1), 33 (2013).

Unlocking the proteome and delivering biomarkers to the clinic will be critical for early and improved diagnosis and prognosis. Conventional protein microarrays have evolved as a promising proteomic technology with great potential for protein expression profiling in health and disease. In this study, Akada et al. explore a new type of protein chip, interfaced with a dual-color fluorescence-based read-out, for screening of autoantibodies in serum. Uniquely, the recombinant antigens were microarray adapted by molecular design to contain a five-cysteine tag for immobilization and green fluorescent protein for detection (color 1). The engineered antigens were immobilized on in-house-designed maleimide-incorporated diamond-like carbon substrates and subsequently heat treated in a solution of denaturing and reducing agents before any specifically bound serum autoantibodies were detected (color 2). The authors used a 4-plex array targeting hepatocellular carcinoma-related autoantibodies in the sera of hepatitis C virus-positive patients as model system to demonstrate proof-of-concept.  相似文献   

4.
Patients with the autosomal recessively inherited autoimmune polyendocrine syndrome type I (APS I) have autoantibodies directed against several endocrine and nonendocrine organs. In this study a new autoantigen related to this syndrome, tyrosine hydroxylase, was identified in sera from patients with alopecia areata through immunoscreening of a scalp cDNA library. Immunoreactivity against in vitro expressed tyrosine hydroxylase was found in 41 (44%) of the 94 APS I patients studied and this reactivity correlated with the presence of alopecia areata (P = 0.02). These findings further stress the importance of enzymes involved in neurotransmitter biosynthesis as important immune targets in APS I.  相似文献   

5.
A rapid and accurate detection of molecular binding of antigen-antibody signaling in high throughput is of great importance for biosensing technology. We proposed a novel optical biochip with multichannels for the purpose of detection of biotin–streptavidin on the basis of localized surface plasmon resonance. The optical biochip was fabricated using photolithography to form the microarrays functioning with multichannels on glass substrate. There are different nanostructures in each microarray. Dry etching and nanosphere lithography techniques were applied to fabricate Ag nanostructures such as hemispheres, nanocylindricals, triangular, and rhombic nanostructures. We demonstrated that 100-nM target molecule (streptavidin) on these optical biochips can be easily detected by a UV-visible spectrometer. It indicated that period and shape of the nanostructures significantly affect the optical performance of the nanostructures with different shapes and geometrical parameters. Our experimental results demonstrated that the optical biochips with the multichannels can detect the target molecule using the microarrays structured with different shapes and periods simultaneously. Batch processing of immunoassay for different biomolecular through the different channels embedded on the same chip can be realized accordingly.  相似文献   

6.
探讨疣粒野生稻应答黄单胞杆菌水稻致病变种(Xoo)的基因芯片制作,通过芯片杂交筛选抗病相关基因。芯片含有2436个片段,来自于应答撖)O的疣粒野生稻差减文库和cDNA文库,通过芯片杂交及微阵列分析基因表达,选其中800个样品点测序比对。其中,35个无同源序列,大部分有同源序列的功能未知,已知功能的序列中明显上调表达的基因有:富含脯氨酸蛋白、泛素连接酶、伸展蛋白、谷胱甘肽S-转移酶II、脂类转移酶等,明显下调表达的基因有:细胞色素P450单加氧酶、醛缩酶、金属硫蛋白、硫氧还蛋白、热激蛋白等,表达无明显变化的基因有:抗坏血酸过氧化物酶、转铜伴侣、脂酶、花丝温敏H2A蛋白等。高通量基因芯片的利用及微阵列分析是筛选抗病相关基因、获取大量抗病相关信息的有效手段。  相似文献   

7.
Strategy for the design of custom cDNA microarrays   总被引:1,自引:0,他引:1  
Lorenz MG  Cortes LM  Lorenz JJ  Liu ET 《BioTechniques》2003,34(6):1264-1270
DNA microarrays are valuable but expensive tools for expression profiling of cells, tissues, and organs. The design of custom microarrays leads to cost reduction without necessarily compromising their biological value. Here we present a strategy for designing custom cDNA microarrays and constructed a microarray for mouse immunology research (ImmunoChip). The strategy used interrogates expressed sequence tag databases available in the public domain but overcomes many of the problems encountered. Immunologically relevant clusters were selected based on the expression of expressed sequence tags in relevant libraries. Selected clusters were organized in modules, and the best representative clones were identified. When tested, this microarray was found to have minimal clone identity errors or phage contamination and identified molecular signatures of lymphoid cell lines. Our proposed design of custom microarrays avoids probe redundancy, allows the organization of the chip to optimize chip production, and reduces microarray production costs. The strategy described is also useful for the design of oligonucleotide microarrays.  相似文献   

8.
Bacteriophage lambda surface display was used to isolate cDNA clones encoding autoantigens recognized by synovial fluid (SF) or sera from patients with rheumatoid arthritis (RA). We constructed cDNA libraries from human synovial sarcoma cells and synovial tissue, using the surface display vector lambdafoo. The cDNA libraries were screened by affinity selection using 40 SF and 44 sera as probes separately immobilized in microtiter wells. Phage clones isolated encode 13 different autoantigens; an unknown protein, two proteins previously unanalyzed as autoimmune antigens, three proteins previously unknown to be recognized by RA sera, and seven known RA antigens. When analyzed their sensitivity and specificity for RA by phage enzyme-linked immunosorbent assay, frequencies of sera that recognize the newly-isolated autoantigens ranged from 20.5 to 6.8% of a panel of RA sera, and 13.6-0% of other autoimmune disease sera. These results indicate that the lambda phage surface display may be powerful for the isolation of cDNA clones encoding autoantigens recognized by SF or sera from patients with not only RA but also other autoimmune diseases.  相似文献   

9.
Neisseria meningitidis is the most common cause of meningitis and causes epidemic outbreaks. One trait of N. meningitidis, which is associated with most of the currently recognized virulence determinants, is the presence of phase-variable genes that are suspected to enhance its ability to cause an invasive disease. To detect the immune responses to phase-variable expressed proteins, we applied protein microarray technology for the screening of meningitis patient sera. We amplified all 102 known phase-variable genes from N. meningitidis serogroup B strain MC58 by polymerase chain reaction and subcloned them for expression in Escherichia coli. With this approach, we were able to express and purify 67 recombinant proteins representing 66% of the annotated genes. These were spotted robotically onto coated glass slides to generate protein microarrays, which were screened using 20 sera of patients suffering from meningitis, as well as healthy controls. From these screening experiments, 47 proteins emerged as immunogenic, exhibiting a variable degree of seroreactivity with some of the patient sera. Nine proteins elicited an immune response in more than three patients, with one of them, the phase-variable opacity protein OpaV (NMB0442), showing responses in 11 patient sera. This is the first time that protein microarray technology has been applied for the investigation of genetic phase variation in pathogens. The identification of disease-specific proteins is a significant target in biomedical research, as such proteins may have medical, diagnostic, and commercial potential as disease markers.  相似文献   

10.
11.
Motivation: DNA microarrays are a well-known and established technology in biological and pharmaceutical research providing a wealth of information essential for understanding biological processes and aiding drug development. Protein microarrays are quickly emerging as a follow-up technology, which will also begin to experience rapid growth as the challenges in protein to spot methodologies are overcome. Like DNA microarrays, their protein counterparts produce large amounts of data that must be suitably analyzed in order to yield meaningful information that should eventually lead to novel drug targets and biomarkers. Although the statistical management of DNA microarray data has been well described, there is no available report that offers a successful consolidated approach to the analysis of high-throughput protein microarray data. We describe the novel application of a statistical methodology to analyze the data from an immune response profiling assay using human protein microarray with over 5000 proteins on each chip.  相似文献   

12.
There is burgeoning interest in protein microarrays, but a source of thousands of nonredundant, purified proteins was not previously available. Here we show a glass chip containing 2413 nonredundant purified human fusion proteins on a polymer surface, where densities up to 1600 proteins/cm(2) on a microscope slide can be realized. In addition, the polymer coating of the glass slide enables screening of protein interactions under nondenaturing conditions. Such screenings require only 200-microl sample volumes, illustrating their potential for high-throughput applications. Here we demonstrate two applications: the characterization of antibody binding, specificity, and cross-reactivity; and profiling the antibody repertoire in body fluids, such as serum from patients with autoimmune diseases. For the first application, we have incubated these protein chips with anti-RGSHis(6), anti-GAPDH, and anti-HSP90beta antibodies. In an initial proof of principle study for the second application, we have screened serum from alopecia and arthritis patients. With analysis of large sample numbers, identification of disease-associated proteins to generate novel diagnostic markers may be possible.  相似文献   

13.
Gel-based microarrays (biochips) consisting of nanoliter and sub-nanoliter gel drops on hydrophobic substrate are a versatile technology platform for immobilization of proteins and other biopolymers. Biochips provide a highly hydrophilic environment, which stabilizes immobilized molecules and facilitates their interactions with analytes. The probes are immobilized simultaneously with gel polymerization, evenly distributed throughout individual elements, and are easily accessible because of large pores. Each element is an isolated nanotube. Applications of biochips in the studies of protein interactions with other proteins, nucleic acids, and glycans are described. In particular, biochips are compatible with MALDI-MS. Biochip-based assay of prostate-specific antigen became the first protein microarray approved for clinical use by a national regulatory agency. In this review, 3-D immobilization is compared with mainstream technologies based on surface immobilization.  相似文献   

14.
为了加快基因功能的研究,利用已有的来源于不同组织的cDNA克隆,并通过交换和购买补充了低丰度和染色体覆盖不完全的部分cDNA,研制开发出具有相当代表性、覆盖较完全的高密度cDNA表达型基因芯片,每张芯片上含有384个质控DNA和12 630个cDNA探针,其中包括12 508个Unigene和122个表达序列标签(EST).利用这些芯片,对肥胖患者及正常人内脏脂肪组织基因表达谱进行了初步研究,并发现在肥胖患者内脏脂肪组织差异表达的基因,其中上调的有与凋亡相关的基因、与免疫有关的基因以及与能量代谢有关的基因等,而下调的主要是与脂肪酸及胆固醇合成有关的基因,对这些基因进一步的功能研究将为阐明肥胖发生机制奠定基础.  相似文献   

15.
基因芯片又称DNA微阵列,分为cDNA微阵列和寡聚核苷酸微阵列。DNA微阵列技术是探索基因组功能的一种强有力工具。扼要介绍基因芯片、表达谱芯片技术和原理,以及基因芯片技术在肿瘤基因组学中的应用。  相似文献   

16.
17.

Background  

Complementary DNA (cDNA) microarrays are a well established technology for studying gene expression. A microarray image is obtained by laser scanning a hybridized cDNA microarray, which consists of thousands of spots representing chains of cDNA sequences, arranged in a two-dimensional array. The separation of the spots into distinct cells is widely known as microarray image gridding.  相似文献   

18.
Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease of unknown etiology and is considered to be an autoimmune disease. Autoantibodies are important tools for accurate diagnosis of PBC. Here, we employed serum profiling analysis using a human proteome microarray composed of about 17,000 full-length unique proteins and identified 23 proteins that correlated with PBC. To validate these results, we fabricated a PBC-focused microarray with 21 of these newly identified candidates and nine additional known PBC antigens. By screening the PBC microarrays with additional cohorts of 191 PBC patients and 321 controls (43 autoimmune hepatitis, 55 hepatitis B virus, 31 hepatitis C virus, 48 rheumatoid arthritis, 45 systematic lupus erythematosus, 49 systemic sclerosis, and 50 healthy), six proteins were confirmed as novel PBC autoantigens with high sensitivities and specificities, including hexokinase-1 (isoforms I and II), Kelch-like protein 7, Kelch-like protein 12, zinc finger and BTB domain-containing protein 2, and eukaryotic translation initiation factor 2C, subunit 1. To facilitate clinical diagnosis, we developed ELISA for Kelch-like protein 12 and zinc finger and BTB domain-containing protein 2 and tested large cohorts (297 PBC and 637 control sera) to confirm the sensitivities and specificities observed in the microarray-based assays. In conclusion, our research showed that a strategy using high content protein microarray combined with a smaller but more focused protein microarray can effectively identify and validate novel PBC-specific autoantigens and has the capacity to be translated to clinical diagnosis by means of an ELISA-based method.  相似文献   

19.
Autoantibodies in cerebrospinal fluid (CSF) from patients with neuropsychiatric systemic lupus erythematosus (NPSLE) may be potential biomarkers for prediction, diagnosis, or prognosis of NPSLE. We used a human proteome microarray with~17,000 unique full-length human proteins to investigate autoantibodies associated with NPSLE. Twenty-nine CSF specimens from 12 NPSLE, 7 non-NPSLE, and 10 control (non-systemic lupus erythematosus)patients were screened for NPSLE-associated autoantibodies with proteome microarrays. A focused autoantigen microarray of candidate NPSLE autoantigens was applied to profile a larger cohort of CSF with patient-matched sera. We identified 137 autoantigens associated with NPSLE. Ingenuity Pathway Analysis revealed that these autoantigens were enriched for functions involved in neurological diseases (score = 43).Anti-proliferating cell nuclear antigen (PCNA) was found in the CSF of NPSLE and non-NPSLE patients. The positive rates of 4 autoantibodies in CSF specimens were significantly different between the SLE (i.e., NPSLE and non-NPSLE) and control groups: anti-ribosomal protein RPLP0, anti-RPLP1, anti-RPLP2, and anti-TROVE2 (also known as anti-Ro/SS-A). The positive rate for anti-SS-A associated with NPSLE was higher than that for non-NPSLE (31.11% cf. 10.71%; P = 0.045).Further analysis showed that anti-SS-A in CSF specimens was related to neuropsychiatric syndromes of the central nervous system in SLE (P = 0.009). Analysis with Spearman’s rank correlation coefficient indicated that the titers of anti-RPLP2 and anti-SS-A in paired CSF and serum specimens significantly correlated. Human proteome microarrays offer a powerful platform to discover novel autoantibodies in CSF samples. Anti-SS-A autoantibodies may be potential CSF markers for NPSLE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号