首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KCl (16 mM) stimulated the release of [3H]noradrenaline ([3H]NA) from rat hypothalamic synaptosomes in a Ca2+-dependent manner; this release was attenuated by clonidine (0.01-100 microM). Changes in the release of [3H]NA and the functional status of alpha 2-adrenoceptors in the medial hypothalamus of rats treated acutely and chronically with clorgyline (1 mg/kg/day) or desipramine (DMI, 10 mg/kg/day) were assessed using superfused synaptosomes in which the attenuating effects of clonidine (1 microM) or the potentiating effects of yohimbine (1 microM) on K+-evoked release of [3H]NA were measured. After acute administration of DMI, significantly less [3H]NA was accumulated into synaptosomes. Although total (spontaneous + K+-evoked) [3H]NA release from these synaptosomes was unchanged, a significant reduction was apparent in the K+-evoked release from the DMI-treated tissue. Attenuation of K+-evoked release by clonidine was abolished in both these acute treatment groups. Following the chronic antidepressant drug regimens, [3H]NA uptake into DMI-treated tissue remained significantly reduced although total percent and K+-evoked [3H]NA release were unchanged. The K+-evoked release of [3H]NA in S1 was significantly enhanced (by 22%) in the clorgyline treatment group. Attenuation of K+-evoked [3H]NA release by clonidine in both chronic antidepressant-treated tissues was not significantly changed. It is concluded that the functional sensitivity of alpha 2-adrenoceptors on nerve endings in the medial hypothalamus is unchanged by these chronic antidepressant drug regimens. In synaptosomes from untreated tissue, yohimbine significantly potentiated K+-evoked release of [3H]NA; this effect was unchanged after acute regimens and reduced after chronic administration of both the antidepressants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Choline (Ch) is an essential nutrient as the biosynthetic precursor of acetylcholine (ACh) and phospholipids. Under resting conditions, the intracellular accumulation of Ch (above 10-fold), which is positively charged, is governed by the membrane potential and follows the Nernst equation. Accordingly, in synaptosomes from adult rats during depolarization, we observed a linear relationship between release of free cytoplasmic Ch and KCl concentration (2.7-120 mm). The K(+) -evoked Ch release was Ca(2+) -independent and did not originate from ACh or phospholipid hydrolysis. In superfused brain slices of adult rats, however, a K(+) -induced Ch efflux was absent. Also, under in vivo conditions, 30-60 mm KCl failed to increase the extracellular Ch level as shown by microdialysis in adult rat hippocampus. On the contrary, in brain slices from 1-week-old rats, high K(+) as well as 4-aminopyridine evoked a marked Ch efflux in a concentration-dependent fashion. This phenomenon faded within 1 week. Hemicholinium-3 (HC-3, 1 and 10 microm), a blocker of cellular choline uptake, caused a marked efflux of choline from adult rat slices but no or significantly less release from immature slices. We conclude that depolarization of synaptic endings causes a Ca(2+) -independent release of free cytoplasmic Ch into the extracellular space. In adult rat brain, this elevation of Ch is counteracted by a homeostatic mechanism such as uptake into brain cells.  相似文献   

3.
The effect of phorbol esters was investigated on the down-regulation of protein kinase C (PKC) and on the release of [3H]norepinephrine (NE) in synaptosomes from the rat cerebrum. Treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) promoted the translocation of PKC activity in a P2 fraction from the cytosol to the membrane fraction and then its down-regulation, in a dose-dependent manner. TPA induced a rapid down-regulation of the type II(beta) and type III(alpha) subspecies, but did not change the activity of the type I(gamma) subspecies in the cytosolic fraction for at least 15 min. The gamma-subspecies was subsequently decreased at a slower rate. In the synaptosomes thus having only the gamma-subspecies, a subsequent dose of TPA could not enhance K(+)-evoked NE release, although, in the original synaptosomes, TPA was able to enhance K(+)-evoked NE release. Pretreatment with TPA did not alter the K(+)-evoked NE release itself. TPA was also found to enhance the K(+)-evoked NE release from synaptosomes prepared from both hippocampus, which express the gamma-subspecies of PKC at a negligible level, and cerebral cortex, which have a significant level of the gamma-subspecies, to the same degree. These results suggest that the gamma-subspecies of PKC does not participate in the TPA-enhanced K(+)-evoked NE release from synaptosomes.  相似文献   

4.
Hippocampal noradrenergic and cerebellar glutamatergic granule cell axon terminals possess GABA(A) receptors mediating enhancement of noradrenaline and glutamate release, respectively. The hippocampal receptor is benzodiazepine-sensitive, whereas the cerebellar one is not affected by benzodiazepine agonists, indicating the presence of an alpha6 subunit. We tested here the effects of Zn2+ on these two native GABA(A) receptor subtypes using superfused rat hippocampal and cerebellar synaptosomes. In the cerebellum, zinc ions strongly inhibited (IC50 approximately 1 microM) the potentiation of the K(+)-evoked [3H]D-aspartate release induced by GABA. In contrast, the GABA-evoked release of [3H]noradrenaline from hippocampal synaptosomes was much less sensitive to Zn2+ (IC50 > 30 microM). The effects of Zn2+ were then studied in two rat lines selected for high (ANT) and low (AT) alcohol sensitivity because granule cell GABA(A) receptors in ANT, but not AT, rats respond to benzodiazepine agonists due to a critical mutation in the alpha6 subunit. GABA increased the K(+)-evoked release of [3H]DCNS REGIONS-aspartate from cerebellar synaptosomes of AT and ANT rats, an effect prevented by the GABAA selective antagonist bicuculline. In AT rat cerebellum, the effect of GABA was strongly inhibited by Zn2+ (IC50 < or = 1 microM), whereas in ANT rats, the divalent cation was about 100-fold less potent. Thus, native benzodiazepine-sensitive GABAA receptors appear largely insensitive to functional inhibition by Zn2+ and vice versa. Changes in sensitivity to Zn2+ inhibition consequent to mutations in cerebellar granule cell GABA(A) receptor subunits may lead to changes in glutamate release from parallel fibers onto Purkinje cells and may play important roles in cerebellar dysfunctions.  相似文献   

5.
Hypoxia induces alterations of central monoaminergic transmission and of behavior. We studied the effect of hypoxia on adult and newborn rats to obtain more information about long-lasting changes of dopamine (DA) transmission caused by neonatal hypoxia. One single exposure of adult rats to hypoxia leads to short-term alterations of DA uptake: decreased affinity of the uptake carrier to DA (Km, 269.5% versus control) and a sharp increase of Vmax up to 301.4% resulting in an increase of total uptake of DA into the striatum synaptosomes. The K+-evoked DA release decreased to 69.5%. After 1 week of recovery all parameters are normalized. Chronic postnatal hypoxia (postnatal day 2-11) caused long-lasting changes of DA release and uptake opposite to those observed in adult rats. Three months after hypoxia, the K+-stimulated DA release was enhanced (132% of control), and the uptake was reduced due to decreased affinity of the uptake carrier system for the substrate (Km, 187% of control value). In conclusion, the alterations observed after chronic postnatal hypoxia reflect special adaptive processes that are related to the high plasticity of the immature neonatal brain and contribute to an increased DA function in the nigrostriatal system.  相似文献   

6.
The characteristics of the release of endogenous dopamine and noradrenaline from rat brain synaptosomes were studied using HPLC with an electrochemical detector. The spontaneous release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. Also, the high-K+ (30 mM)-evoked release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. From these results, the ratio of the Ca2(+)-dependent component to the total release of noradrenaline seemed to be similar to that of dopamine. On the other hand, 20 microM La3+ or 1 microM diltiazem inhibited both the spontaneous and 30 mM K(+)-evoked release of dopamine by approximately 50-60% but inhibited neither the spontaneous nor the 30 mM K(+)-evoked release of noradrenaline. The K(+)-evoked rise in intrasynaptosomal Ca2+ concentration was mostly blocked in Ca2(+)-free medium or 100 microM La3(+)-containing medium but was only partially blocked by 20 microM La3+ or 1 microM diltiazem. These data indicate alternative possibilities in that the Ca2(+)-dependent release of noradrenaline might be less sensitive to a change of intracellular Ca2+ concentration than that of dopamine and that the calcium channels directly involved in the noradrenaline release may be more resistant to diltiazem and La3+ than those involved in the dopamine release.  相似文献   

7.
The effects of diclofensine, a pure dopamine (DA) uptake inhibitor on 1) 3H-DA uptake in rat arcuate-periventricular nucleus-median eminence synaptosomes, 2) basal and K+-evoked endogenous DA release from tuberoinfundibular dopaminergic (TIDA) neurons and 3) in vivo prolactin (PRL) secretion were studied. Diclofensine, in concentrations of 0.01, 0.1 and 1 microM caused a marked decrease of 3H-DA uptake. In addition, it was unable to stimulate basal endogenous DA release which, on the contrary, was elicited by d-amphetamine in the same concentration (50 microM). On the other hand, diclofensine (50 microM) caused a 3 fold enhancement of K+-evoked DA release. Finally, the compound, when administered in vivo to male rats, significantly reduced basal serum PRL levels. The results of the present study seem to indicate that the pharmacological blockade of DA uptake in TIDA neurons is a condition sufficient to cause a reduction of PRL release.  相似文献   

8.
K A Yurko  L F Quenzer 《Life sciences》1986,38(15):1393-1397
Trifluoperazine (5-200 microM) stimulated the release of 3H-NE from isolated whole pineal glands in a dose dependent manner. Trifluoperazine-induced release was not dependent on extracellular Ca++, whereas 60 mM K+-evoked release was attenuated in the presence of EGTA and zero Ca++ Krebs. 60 mM K+ and 50 microM trifluoperazine produced an additive effect on 3H-NE release. Clonidine (5 microM) significantly reduced trifluoperazine-induced release by approximately 50% in the presence of Ca++, and in its absence, clonidine significantly attenuated the trifluoperazine response by 42%. Thus trifluoperazine may be acting upon the alpha 2 receptor or intracellular stores of Ca++. These intracellular interactions remain for further study.  相似文献   

9.
1. With the aim of gaining insight into the mechanism of Ca2(+)-dependent secretion, inhibition of transmitter release by botulinum neurotoxins or their fragments was studied at mammalian motor nerve terminals, cerebrocortical synaptosomes and PC-12 cells. 2. Relative to BoNT type A, the feeble neuromuscular paralytic activity of its two chains and the lack of activity observed with a proteolytic fragment, H2L (lacking H1, the C-terminal half of the heavy chain) highlight a requirement of the intact, disulphide-linked dichain protein for efficient targetting (binding/uptake) to peripheral cholinergic nerve endings. 3. In PC-12 cells, the renatured light chain alone proved equally potent as the whole toxin in reducing Ca2(+)-evoked noradrenaline release, when digitonin-permeabilization was used to overcome the uptake barrier. Treatment of BoNT A with 10 mM dithiothreitol, under non-denaturing conditions, was not very effective in reducing its inter-chain disulphide bond(s) and had little influence on the level of inhibition seen. 4. Altering the intra-synaptosomal concentrations of cyclic nucleotides (c-AMP, c-GMP) or protein kinase C activity failed to affect the reduction of Ca2(+)-dependent K(+)-stimulated noradrenaline release caused by BoNT A or B. On the other hand, raising the cytosolic Ca2+ concentration with the ionophore A23187 reversed the inhibitory effect of BoNT A to a greater extent than that of type B, revealing differences in their actions. 5. Whereas BoNT-induced decrease of Ca2(+)-dependent K(+)-evoked release of noradrenaline was unaffected by destruction of the actin-based cytoskeleton in synaptosomes with cytochalasin D, disassembly of microtubules with colchicine, nocodazole or griseofulvin antagonised the intracellular action of type B but not A. It is speculated that BoNT B blocks transmitter release by interfering with the proposed detachment of synaptic vesicles from microtubules. Establishing the precise involvement of tubulin in the toxin's action may provide a valuable clue to the mechanism of neurotransmitter release or its control.  相似文献   

10.
In this study we have used fluoride as a tool to investigate the involvement of G protein-coupled effector systems in the regulation of the depolarization-induced release of gamma-aminobutyric acid (GABA) from rat cerebral cortex. To distinguish among the activating effects of NaF on G proteins linked to different effectors, such as adenylate cyclase, polyphosphoinositide phospholipase C, and K+ channels, agents specific to these effectors have been used in parallel. NaF induced a marked dose-dependent facilitation of the K(+)-evoked release of [14C]GABA, with an EC50 of 1.26 mM, increasing release by 103% at 5 mM NaF. No effect on basal release was seen up to 3 mM NaF, and no modulation of [3H]acetylcholine (ACh) release was seen up to 5 mM NaF. Phorbol 12,13-diacetate (PDA) produced a similar dose-dependent facilitation of the K(+)-evoked release of [14C]GABA, potentiating the release of [14C]GABA by 50% at 10 microM PDA. The phosphodiesterase inhibitors, 3-isobutyl-1-methylxanthine (IBMX) and theophylline, inhibited the K(+)-evoked release of [14C]GABA, and IBMX reversed the NaF facilitation of GABA release in a dose-dependent manner (pA2 2.57). The K+ channel blocker (IA current) tetrahydroaminoacridine (THA), which markedly inhibits the K(+)-evoked release of [14C]GABA, also reversed the NaF facilitatory effect, but the release of [3H]ACh was less sensitive to the inhibitory effect of THA. On the other hand, the K+ channel blocker, tetraethylammonium, which has no effect on the release of [14C]GABA, caused a significant facilitation of K(+)-evoked release of [3H]ACh. From these studies, it is concluded that GABA release in cerebral cortex is subject to regulation by G protein-linked effector systems that are distinct from those affecting the release of [3H]ACh in cerebral cortex.  相似文献   

11.
It is known that nicotine can activate several subtypes of release-regulating presynaptic nicotinic receptors (nAChRs) including those situated on central noradrenergic, dopaminergic, cholinergic and glutamatergic axon terminals. The objective of this study was to investigate the effects of chronic administration of (-)nicotine on the function of the above autoreceptors and heteroreceptors using rat superfused synaptosomes. In hippocampal synaptosomes prelabelled with [3H]noradrenaline (NA) the nicotine-evoked overflow of [3H]NA was higher in rats treated with nicotine for 10 days (via osmotic mini-pumps) than in vehicle-treated rats. In striatal synaptosomes, prelabelled with [3H]dopamine (DA), chronic nicotine did not modify the releasing effect of nicotine. No significant change was observed in experiments with synaptosomes from nucleus accumbens prelabelled with [3H]DA. Exposure of hippocampal synaptosomes prelabelled with [3H]choline to nicotine elicited release of [3H]acetylcholine; this effect was almost abolished in synaptosomes from animals administered nicotine for 10 days, suggesting down-regulation of nicotinic autoreceptors. In hippocampal synaptosomes prelabelled with [3H]D-aspartate, the releasing effect of epibatidine following chronic nicotine treatment did not differ from that in controls. The K+-evoked exocytotic release of the neurotransmitters tested was not modified by long-term nicotine administration. The results show that chronic nicotine differentially affects the function of release-regulating nAChR subtypes.  相似文献   

12.
The present experiments were carried out to determine the effects of energy deposition from energetic iron (56Fe particles, an important component of cosmic rays) on motor behavioral performance and to determine if the observed deficits were caused by alterations in the neostriatum (an important motor control area). Neostriatal function was assessed with two correlated parameters, i.e., motor behavioral performance (wire suspension task), and oxotremorine-enhanced K(+)-evoked release of dopamine from perifused striatal slices. Rats were exposed to one of several doses of 56Fe-particle irradiation (0.10-1.0 Gy) and tested on a wire suspension task at 3-180 days postirradiation. Results indicated that profound decrements occurred in both of these indices. The effects on K(+)-evoked release of dopamine were evident for as long as 180 days after irradiation, and a subsequent experiment indicated that these effects appeared as early as 12 h postirradiation. Since similar findings have been observed in aged rats, the results are discussed in terms of these particles producing a possible accelerated striatal aging effect.  相似文献   

13.
Rat cerebral cortex synaptosomes were exposed in superfusion to various depolarizing stimuli and the release of somatostatin-like immunoreactivity (SRIF-LI) was measured by means of a radioimmunoassay procedure. High KCl (9-50 mM) concentration dependently evoked SRIF-LI release; the evoked overflow reached a plateau at 25 mM KCl and was completely abolished when Ca2+ ions were omitted from the superfusion medium, independently of the concentration of KCl used. The 15 mM K(+)-evoked release of SRIF-LI increased sharply as the Ca2+ concentration was raised to 0.8 mM, then leveled off and reached a plateau at 1.2 mM. The 15 mM K(+)-evoked overflow, but not the spontaneous outflow, was partially decreased (50%) by 1 microM tetrodotoxin. The presence in the superfusion fluid of a mixture of peptidase inhibitors did not improve the recovery of SRIF-LI both in the absence and in the presence of high K+. Exposure of synaptosomes to veratrine (1-50 microM) induced release of SRIF-LI in a concentration-dependent way. The effect of the alkaloid was strictly Ca2+ and tetrodotoxin sensitive. Replacement of extracellular Na+ by sucrose caused an acceleration of the spontaneous SRIF-LI outflow that was inversely correlated to the Na+ content in the superfusion medium. The release evoked by the sodium-deprived media did not exhibit any calcium dependence. HPLC analysis of the samples collected during superfusion showed that greater than 90% of the SRIF-LI released either during the spontaneous outflow or by 15 mM KCl was represented by SRIF-14 (SRIF-28(14-28]. These values reflected the ratio SRIF-14/SRIF-28 found in synaptosomes at the end of the experiments.  相似文献   

14.
The effect of galanin, a peptide present in a subpopulation of histaminergic neurons emanating from the rat posterior hypothalamus, was investigated on K(+)-evoked [3H]histamine release in slices and synaptosomes from rat cerebral cortex, striatum, hippocampus and hypothalamus. Porcine galanin (0.3 microM) significantly inhibited histamine release induced by 25 mM K+ in slices from hypothalamus and hippocampus, but not from cerebral cortex and striatum, i.e., only in regions in which a colocalization of histamine and galanin has been described. The inhibitory effect of galanin was concentration dependent, with an EC50 value of 5.8 +/- 1.9 nM. The maximal inhibition was of 30-40% in hypothalamic and hippocampal slices depolarized with 25 mM K+. The galanin-induced inhibition observed in hypothalamic slices was not prevented in the presence of 0.6 microM tetrodotoxin and also occurred in hippocampal and hypothalamic synaptosomes, strongly suggesting the activation by galanin of presynaptic receptors located upon histaminergic nerve endings. The maximal inhibitory effect of galanin in slices or synaptosomes was lower than that previously reported for histamine acting at H3-autoreceptors, possibly suggesting that not all histaminergic axon terminals, even in the hypothalamus and hippocampus, are endowed with galanin receptors. It increased progressively in hypothalamic and hippocampal synaptosomes as the strength of the depolarizing stimulus was reduced. It is concluded that galanin modulates histamine release via presynaptic receptors, presumably autoreceptors located upon nerve terminals of a subpopulation of cerebral histaminergic neurons.  相似文献   

15.
Since it has been suggested that angiotensin (Ang) (1-7) functions as an antihypertensive peptide, we studied its effect on the Ang II-enhanced norepinephrine (NE) release evoked by K+ in hypothalami isolated from aortic coarcted hypertensive (CH) rats. The endogenous NE stores were labeled by incubation of the tissues with 3H-NE during 30 min, and after 90 min of washing, they were incubated in Krebs solution containing 25 mM KCl in the absence or presence of the peptides. Ang-(1-7) not only diminished the K+-evoked NE release from hypothalami of CH rats, but also blocked the Ang II-enhanced NE release induced by K+. Ang-(1-7) blocking action on the Ang II response was prevented by [D-Ala7]Ang-(1-7), an Ang-(1-7) specific antagonist, by PD 123319, an AT2-receptor antagonist, and by Hoe 140, a B2 receptor antagonist. Ang-(1-7) inhibitory effect on the Ang II facilitatory effect on K+-stimulated NE release disappeared in the presence of Nomega-nitro-L-arginine methylester and was restored by L-arginine. Our present results suggest that Ang-(1-7) may contribute to blood pressure regulation by blocking Ang II actions on NE release at the central level. This inhibitory effect is a nitric oxide-mediated mechanism involving AT2 receptors and/or Ang-(1-7) specific receptors and local bradykinin generation.  相似文献   

16.
The involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) and cyclic AMP-dependent protein kinase in the K+-evoked release of norepinephrine (NE) was studied using guinea pig brain cortical synaptosomes preloaded with [3H]NE. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a potent activator of PKC, enhanced the K+-evoked release of [3H]NE, in a concentration-dependent manner, but with no effect on the spontaneous outflow and uptake of [3H]NE in the synaptosomes. The apparent affinity of the evoked release for added calcium but not the maximally evoked release was increased by TPA (10(-7) M). Inhibitors of PKC, polymyxin B, and a more potent inhibitor, staurosporine, counteracted the TPA-induced potentiation of the evoked release. Both forskolin and dibutyryl cyclic AMP (DBcAMP) enhanced the evoked release, but reduced the TPA-potentiated NE release. A novel inhibitor of cyclic AMP-dependent protein kinase, KT5720, blocked both the forskolin-induced increase in the evoked release and its inhibition of TPA-induced potentiation in the evoked release, thereby suggesting that forskolin or DBcAMP counteracts the Ca2+-dependent release of NE by activating cyclic AMP-dependent protein kinase. These results suggest that the activation of PKC potentiates the evoked release of NE and that the activation of cyclic AMP-dependent protein kinase acts negatively on the PKC-activated exocytotic neurotransmitter release process in brain synaptosomes of the guinea pig.  相似文献   

17.
A number of studies have found that the chronic administration of nicotine causes an increase in the density of nicotinic binding sites in the brain, but it is not known whether these additional binding sites are functionally active receptors. In this study, the effects of 1-week administration of the potent nicotinic agonist, (+)-anatoxin-a (96 nmol/day via osmotic minipumps), was assessed on [3H]nicotine binding and [3H]dopamine uptake and release in rat striatal synaptosomes. Chronic (+)-anatoxin-a treatment resulted in a 32% increase in the Bmax of [3H]nicotine binding in anatoxin-treated animals compared to control. There was a 43% increase in the activity of 3 microM nicotine to release [3H]dopamine from synaptosomes of anatoxin-treated animals, but the release induced by 20 mM K+ depolarization was unaffected. There was no effect of chronic (+)-anatoxin-a treatment on the uptake of [3H]dopamine. A strong positive correlation (r = 0.64) was found between the density of [3H]nicotine binding sites and the nicotine-induced stimulation of [3H]dopamine release in individual animals. These results indicate that (+)-anatoxin-a, like nicotine, produces an up-regulation of nicotine binding sites following chronic administration, and that these additional sites are functional receptors capable of mediating the release of dopamine from striatal synaptosomes.  相似文献   

18.
[3H]Adrenaline ([3H]ADR, 40 nM) was accumulated by rat hypothalamic synaptosomes (P2) more rapidly and in significantly greater amounts than by similar preparations from cerebral cortex. There was no significant difference between these two tissues in the rate or amount of [3H]noradrenaline ([3H]NA, 40 nM) accumulation. Talusupram (10 microM), maximally inhibited the uptake of [3H]ADR into hypothalamic synaptosomes by 60%. Nomifensine further inhibited uptake by 14%. From these observations it was concluded that some [3H]ADR was accumulated into non adrenergic neuronal terminals. The effects of desipramine (DMI, 10 mg/kg/day and clorgyline (1 mg/kg/day) administration for 28 days on K+-evoked release of [3H]ADR was investigated using superfused hypothalamic synaptosomes. After both chronic antidepressant drug regimens, total [3H]ADR release (spontaneous + evoked) was significantly reduced. Evoked release of [3H]ADR (by KCl, 16 mM) was significantly reduced after the DMI but not the clorgyline regimens. Presynaptic alpha 2-adrenoceptor function in the hypothalamus was assessed during superfusion by measuring the reduction in K+-evoked release of [3H]ADR caused by clonidine (1 microM). The attenuating effects of clonidine on [3H]ADR release (42% in untreated controls and 36% after chronic clorgyline) was diminished (to 4%) after chronic DMI administration. Alpha 2 adrenoceptor numbers in the rat hypothalamus were not significantly changed after clorgyline or DMI administration, suggesting that the functional subsensitivity seen in synaptosomes after DMI, may not be related to alpha 2 adrenoceptor down regulation.  相似文献   

19.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+.  相似文献   

20.
Rat brain hypothalami were exposed to various depolarizing stimuli and vasoactive intestinal polypeptide-like immunoreactivity (VIP-LI) release was measured by means of a radioimmunoassay (RIA) procedure. Under conditions of noradrenergic blockade, exposure to high K(+) (40-100 mM) produced dose-dependent increases in the VIP-LI release in a Ca(2+)-dependent manner. Exposure to veratridine (3-100 microM) also induced concentration-dependent increases in VIP-LI release, an effect that was Ca(2+)-dependent and tetrodotoxin (TTX)-sensitive. Specific ligands for the L, N, and P/Q-type voltage-operated Ca(2+) channels (VOCCs) were used to determine which channel subtypes were involved in the K(+)-evoked VIP-LI release. The L-type VOCC ligand, nifedipine (10 microM), had no effect on release. In contrast, the N-type VOCC blocker, omega-conotoxin GVIA (omega-CgTx GVIA) (0.1-100 nM), markedly reduced the K(+)-evoked response, with maximal inhibition of approximately 60+/-8%. omega-Agatoxin IVA (omega-Aga IVA) (1-50 nM), which binds P-type and, at high doses, also Q-type VOCCs, produced dose-dependent inhibition of up to 25+/-3%, while the maximal inhibition observed with the non-selective VOCCs ligand, omega-conotoxin MVIIC (omega-CmTx MVIIC) (1 nM-3 microM), amounted to 85+/-8%. These findings indicate that N and P-type Ca(2+) channels play predominant roles in the high K(+)-evoked release of VIP-LI from the rat hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号