首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Arabidopsis UDP-sugar pyrophosphorylase (AtUSP, EC 2.7.7.64) is a broad substrate pyrophosphorylase that exhibits activity with GlcA-1-P, Gal-1-P and Glc-1-P. Immunoblots using polyclonal antibodies raised to recombinant AtUSP demonstrated the presence of two USP isoforms of approximately 70 kDa (USP1) and 66 kDa (USP2) in crude extracts of Arabidopsis tissues. The 66 kDa isoform was not the result of proteolytic cleavage of USP1 during extraction. Trypsin digestion of bands on SDS gels corresponding to the location of the two isoforms followed by tandem mass spectrometry confirmed that USP peptides were present in both bands. Both USP isoforms were detected in the cytosol as determined by immunoblots of cellular fractions obtained by differential centrifugation. However, some USP1 was also detected in the microsomal fraction. Immunoprecipitation assays demonstrated that AtUSP antibodies removed USP activity (UDP-GlcA→GlcA-1-P) measured in floret extracts. These results indicate that USP is the only pyrophosphorylase that utilizes UDP-GlcA as a substrate and suggest that it serves as the terminal enzyme of the myo-inositol oxidation pathway.  相似文献   

3.
The Cucurbitaceae translocate a significant portion of their photosynthate as raffinose and stachyose, which are galactosyl derivatives of sucrose. These are initially hydrolyzed by alpha-galactosidase to yield free galactose (Gal) and, accordingly, Gal metabolism is an important pathway in Cucurbitaceae sink tissue. We report here on a novel plant-specific enzyme responsible for the nucleotide activation of phosphorylated Gal and the subsequent entry of Gal into sink metabolism. The enzyme was antibody purified, sequenced, and the gene cloned and functionally expressed in Escherichia coli. The heterologous protein showed the characteristics of a dual substrate UDP-hexose pyrophosphorylase (PPase) with activity toward both Gal-1-P and glucose (Glc)-1-P in the uridinylation direction and their respective UDP-sugars in the reverse direction. The two other enzymes involved in Glc-P and Gal-P uridinylation are UDP-Glc PPase and uridyltransferase, and these were also cloned, heterologously expressed, and characterized. The gene expression and enzyme activities of all three enzymes in melon (Cucumis melo) fruit were measured. The UDP-Glc PPase was expressed in melon fruit to a similar extent as the novel enzyme, but the expressed protein was specific for Glc-1-P in the UDP-Glc synthesis direction and did not catalyze the nucleotide activation of Gal-1-P. The uridyltransferase gene was only weakly expressed in melon fruit, and activity was not observed in crude extracts. The results indicate that this novel enzyme carries out both the synthesis of UDP-Gal from Gal-1-P as well as the subsequent synthesis of Glc-1-P from the epimerase product, UDP-Glc, and thus plays a key role in melon fruit sink metabolism.  相似文献   

4.
Synthesis of the type 3 capsular polysaccharide of Streptococcus pneumoniae requires UDP-glucose (UDP-Glc) and UDP-glucuronic acid (UDP-GlcUA) for production of the [3)-beta-D-GlcUA-(1-->4)-beta-D-Glc-(1-->](n) polymer. The generation of UDP-Glc proceeds by conversion of Glc-6-P to Glc-1-P to UDP-Glc and is mediated by a phosphoglucomutase (PGM) and a Glc-1-P uridylyltransferase, respectively. Genes encoding both a Glc-1-P uridylyltransferase (cps3U) and a PGM homologue (cps3M) are present in the type 3 capsule locus, but these genes are not essential for capsule production. In this study, we characterized a mutant that produces fourfold less capsule than the type 3 parent. The spontaneous mutation resulting in this phenotype was not contained in the type 3 capsule locus but was instead located in a distant gene (pgm) encoding a second PGM homologue. The function of this gene product as a PGM was demonstrated through enzymatic and complementation studies. Insertional inactivation of pgm reduced capsule production to less than 10% of the parental level. The loss of PGM activity in the insertion mutants also caused growth defects and a strong selection for isolates containing second-site suppressor mutations. These results demonstrate that most of the PGM activity required for type 3 capsule biosynthesis is derived from the cellular PGM.  相似文献   

5.
Interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) by the UDP-Glc 4´-epimerase intimately connects the biosynthesis of these two nucleotide sugars. Their de novo biosynthesis involves transformation of glucose-6-phosphate into glucose-1-phosphate by the phosphoglucomutase and subsequent activation into UDP-Glc by the specific UDP-Glc pyrophosphorylase (UGP). Besides UGP, Leishmania parasites express an uncommon UDP-sugar pyrophosphorylase (USP) able to activate both galactose-1-phosphate and glucose-1-phosphate in vitro. Targeted gene deletion of UGP alone was previously shown to principally affect expression of lipophosphoglycan, resulting in a reduced virulence. Since our attempts to delete both UGP and USP failed, deletion of UGP was combined with conditional destabilisation of USP to control the biosynthesis of UDP-Glc and UDP-Gal. Stabilisation of the enzyme produced by a single USP allele was sufficient to maintain the steady-state pools of these two nucleotide sugars and preserve almost normal glycoinositolphospholipids galactosylation, but at the apparent expense of lipophosphoglycan biosynthesis. However, under destabilising conditions, the absence of both UGP and USP resulted in depletion of UDP-Glc and UDP-Gal and led to growth cessation and cell death, suggesting that either or both of these metabolites is/are essential.  相似文献   

6.
Nucleotide sugars and the enzymes that are responsible for their synthesis are indispensable for the production of complex carbohydrates and, thus, for elaboration of a protective cellular coat for many organisms such as the protozoan parasite Leishmania. These activated sugars are synthesized de novo or derived from salvaged monosaccharides. In addition to UDP-glucose (UDP-Glc) pyrophosphorylase, which catalyzes the formation of UDP-Glc from substrates UTP and glucose-1-phosphate, Leishmania major and plants express a UDP-sugar pyrophosphorylase (USP) that exhibits broad substrate specificity in vitro. The enzyme, likely involved in monosaccharide salvage, preferentially generates UDP-Glc and UDP-galactose, but it may also activate other hexose- or pentose-1-phosphates such as galacturonic acid-1-phosphate or arabinose-1-phosphate. In order to gain insight into structural features governing the differences in substrate specificity, we determined the crystal structure of the L. major USP in the APO-, UTP-, and UDP-sugar-bound conformations. The overall tripartite structure of USP exhibits a significant structural homology to other nucleotidyldiphosphate-glucose pyrophosphorylases. The obtained USP structures reveal the structural rearrangements occurring during the stepwise binding process of the substrates. Moreover, the different product complexes explain the broad substrate specificity of USP, which is enabled by structural changes in the sugar binding region of the active site.  相似文献   

7.
Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.  相似文献   

8.
A new active site directed photoaffinity probe, which is a model compound for studying nucleotide diphosphate sugar binding proteins, has been synthesized by coupling 5-azido-UTP and [32P]Glc-1-P using yeast UDP-glucose pyrophosphorylase to produce [beta-32P]5-azidouridine 5'-diphosphoglucose (5N3UDP-Glc). This probe has photochemical properties similar to that of 5-azidoUTP (Evans, R. K., and Haley, B. E. (1987) Biochemistry 26, 269-276). The efficacy of 5N3UDP-Glc as an active site directed probe was demonstrated using yeast UDP-Glc pyrophosphorylase. Saturation effects of photoinsertion were observed with an apparent Kd of 51 microM and the natural substrate, UDP-Glc, prevented photoinsertion of [beta-32P]5N3UDP-Glc with an apparent Kd of 87 microM. Prevention of photoinsertion was also seen with UTP and pyrophosphate with apparent Kd values less than 200 microM. UMP, UDP, ATP, and GTP were much less effective competitors. Selective photoinsertion was observed with several partially purified enzymes including UDP-Glc dehydrogenase, UDP-Gal-4-epimerase, Gal-1-P uridyltransferase, and phosphorylase a. The absence of nonselective photoinsertion into bulk proteins was demonstrated with crude homogenates of rabbit liver as well as with several UDP-Glc binding proteins. Of the six purified enzymes tested, only phosphoglucomutase has been shown to incorporate radiolabel from the photoprobe in the absence of UV irradiation. These results and a discussion of the utility of 5N3UDP-Glc for detecting UDP-Glc binding proteins and isolating active site peptides are presented.  相似文献   

9.
Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high V(max) in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (V(max) of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium.  相似文献   

10.
ADP-Glc pyrophosphorylase (PPase), a key regulatory enzyme in the biosynthetic pathway of starch and bacterial glycogen, catalyzes the synthesis of ADP-Glc from Glc-1-P and ATP. A homology model of the three-dimensional structure of the Escherichia coli enzyme complexed with ADP-Glc has been generated to study the substrate-binding site in detail. A set of amino acids in the model has been identified to be in close proximity to the glucose moiety of the ADP-Glc ligand. The role of these amino acids (Glu(194), Ser(212), Tyr(216), Asp(239), Phe(240), Trp(274), and Asp(276)) was studied by site-directed mutagenesis through the characterization of the kinetic properties and thermal stability of the designed mutants. All purified alanine mutants had 1 or 2 orders of magnitude lower apparent affinity for Glc-1-P compared with the wild type, indicating that the selected set of amino acids plays an important role in their interaction with the substrate. These amino acids, which are conserved within the ADP-Glc PPase family, were replaced with other residues to investigate the effect of size, hydrophobicity, polarity, aromaticity, or charge on the affinity for Glc-1-P. In this study, the architecture of the Glc-1-P-binding site is characterized. The model overlaps with the Glc-1-P site of other PPases such as Pseudomonas aeruginosa dTDP-Glc PPase and Salmonella typhi CDP-Glc PPase. Therefore, the data reported here may have implications for other members of the nucleotide-diphosphoglucose PPase family.  相似文献   

11.
Genetic transformation using Agrobacterium rhizogenes   总被引:1,自引:0,他引:1  
UDP-glucose pyrophosphorylase (EC 2.7.7.9) has been highly purified from the plant fraction of soybean ( Glycine max L. Merr. cv Williams) nodules. The purified enzyme gave a single polypeptide band following sodium docecyl sulphate polyacryla-mide gel electrophoresis, but was resolved into three bands of activity in non-denaturing gels. The enzyme appeared to be a monomer of molecular weight between 30 and 40 kDa. UDP-glucose pyrophosphorylase had optimum activity at pH 8.5 and displayed typical hyperbolic kinetics. The enzyme had a requirement for divalent metal ions, and was highly specific for the substrates pyrophosphate and UDP-glucose in the pyrophosphorolysis direction, and glucose-1-phosphate and UTP in the direction of UDP-glucose synthesis. The Km values were 0.19 m M and 0.07 m M for pyrophosphate and UDP-glucose, respectively, and 0.23 m M and 0.11 m M for glucose-1-phosphate and UTP. The maximum velocity in the pyrophosphorolysis direction was almost double that for the reverse reaction. UDP-glucose pyrophosphorylase did not appear to be subject to a high degree of fine control, and activity in vivo may be regulated mainly by the availability of the substrates.  相似文献   

12.
Changes in the activities of enzymes involved in UDP-sugar formation [UDP-glucose pyrophosphorylase (EC 2.7.7.9), sucrose synthase (EC 2.4.1.13) and UDP-glucuronic acid pyrophosphorylase (EC 2.7.7.44)], and interconversion [UDP-glucuse 4-epimerase (EC 5.1.3.2), UDP-glucose dehydrogenase (EC 1.1.1.22), UDP-glucuronic acid decarboxylase (EC 4.1.1.35) and UDP-xylose 4-epimerase (EC 5.1.3.5)] were investigated during the cell cycle in a synchronous culture of Catharanthus roseus (L.) G. Don. The specific activities of UDP-glucose pyrophosphorylase and UDP-glucose 4-epimerase increased in the G2 phase before the first cell division, and those of sucrose synthase, UDP-glucose dehydrogenase and UDP-glucuronic acid pyrophosphorylase increased in the G1 phase after the first cell division. However, during the cell cycle, UDP-glucuronic acid decarboxylase and UDP-xylose 4-epimerase did not change significantly in their specific activities. Changes in enzyme activities are discussed in relation to those reported previously for cell wall composition (S. Amino et al. 1984. Physiologia Plantarum 60: 326–332).  相似文献   

13.
Recombinant muscle GYS1 (glycogen synthase 1) and recombinant liver GYS2 were phosphorylated by recombinant AMPK (AMP-activated protein kinase) in a time-dependent manner and to a similar stoichiometry. The phosphorylation site in GYS2 was identified as Ser7, which lies in a favourable consensus for phosphorylation by AMPK. Phosphorylation of GYS1 or GYS2 by AMPK led to enzyme inactivation by decreasing the affinity for both UDP-Glc (UDP-glucose) [assayed in the absence of Glc-6-P (glucose-6-phosphate)] and Glc-6-P (assayed at low UDP-Glc concentrations). Incubation of freshly isolated rat hepatocytes with the pharmacological AMPK activators AICA riboside (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) or A769662 led to persistent GYS inactivation and Ser7 phosphorylation, whereas inactivation by glucagon treatment was transient. In hepatocytes from mice harbouring a liver-specific deletion of the AMPK catalytic α1/α2 subunits, GYS2 inactivation by AICA riboside and A769662 was blunted, whereas inactivation by glucagon was unaffected. The results suggest that GYS inactivation by AMPK activators in hepatocytes is due to GYS2 Ser7 phosphorylation.  相似文献   

14.
Tissue distribution and activity of enzymes involved in sucrose and hexose metabolism were examined in kernels of two inbreds of maize (Zea mays L.) at progressive stages of development. Levels of sugars and starch were also quantitated throughout development. Enzyme activities studied were: ATP-linked fructokinase, UTP-linked fructokinase, ATP-linked glucokinase, sucrose synthase, UDP-Glc pyrophosphorylase, UDP-Glc dehydrogenase, PPi-linked phosphofructokinase, ATP-linked phosphofructokinase, NAD-dependent sorbitol dehydrogenase, NADP-dependent 6-P-gluconate dehydrogenase, NADP-dependent Glc-6-P dehydrogenase, aldolase, phosphoglucoisomerase, and phosphoglucomutase. Distribution of invertase activity was examined histochemically. Hexokinase and ATP-linked phosphofructokinase activities were the lowest among these enzymes and it is likely that these enzymes may regulate the utilization of sucrose in developing maize kernels. Most of the hexokinase activity was found in the endosperm, but the embryo had high activity on a dry weight basis. The endosperm, which stores primarily starch, contained high PPi-linked phosphofructokinase and low ATP-linked phosphofructokinase activities, whereas the embryo, which stores primarily lipids, had much higher ATP-linked phosphofructokinase activity than did the endosperm. It is suggested that PPi required by UDP-Glc pyrophosphorylase and PPi-linked phosphofructokinase in the endosperm may be supplied by starch synthesis. Sorbitol dehydrogenase activity was largely restricted to the endosperm, whereas 6-P-gluconate and Glc-6-P dehydrogenase activities were highest in the base and pericarp. A possible metabolic pathway by which sucrose is converted into starch is proposed.  相似文献   

15.
The enzyme phosphoglucomutase plays a key role in cellular metabolism by virtue of its ability to interconvert Glc-1-P and Glc-6-P. It was recently shown that a yeast strain lacking the major isoform of phosphoglucomutase (pgm2Delta) accumulates a high level of Glc-1-P and exhibits several phenotypes related to altered Ca(2+) homeostasis when d-galactose is utilized as the carbon source (Fu, L., Miseta, A., Hunton, D., Marchase, R. B., and Bedwell, D. M. (2000) J. Biol. Chem. 275, 5431-5440). These phenotypes include increased Ca(2+) uptake and accumulation and sensitivity to high environmental Ca(2+) levels. In the present study, we overproduced the enzyme UDP-Glc pyrophosphorylase to test whether the overproduction of a downstream metabolite produced from Glc-1-P can also mediate changes in Ca(2+) homeostasis. We found that overproduction of UDP-Glc did not cause any alterations in Ca(2+) uptake or accumulation. We also examined whether Glc-6-P can influence cellular Ca(2+) homeostasis. A yeast strain lacking the beta-subunit of phosphofructokinase (pfk2Delta) accumulates a high level of Glc-6-P (Huang, D., Wilson, W. A., and Roach, P. J. (1997) J. Biol. Chem. 272, 22495-22501). We found that this increase in Glc-6-P led to a 1.5-2-fold increase in total cellular Ca(2+). We also found that the pgm2Delta/pfk2Delta strain, which accumulated high levels of both Glc-6-P and Glc-1-P, no longer exhibited the Ca(2+)-related phenotypes associated with high Glc-1-P levels in the pgm2Delta mutant. These results provide strong evidence that cellular Ca(2+) homeostasis is coupled to the relative levels of Glc-6-P and Glc-1-P in yeast.  相似文献   

16.
Uridine 5'-diphosphate galacturonic acid (UDP-GalA) is a substrate for the galacturonosyltransferases that synthesize the three pectic polysaccharides homogalacturonan, rhamnogalacturonan I, and rhamnogalacturonan II. Pectin synthesis occurs in the Golgi and it is hypothesized that UDP-GalA is transported into the lumen of the Golgi by membrane-localized transporters. To study the transport and metabolism of UDP-GalA in the Golgi, UDP-GalA labeled in the uridine moiety is required. Here we present a high-yield method for the synthesis of [(3)H]UDP-GalA from [(3)H]UTP and Glc-1-P by sequential reactions catalyzed by UDP-Glc pyrophosphorylase, UDP-Glc dehydrogenase, and UDP-GlcA-4-epimerase and the separation of the reaction products over a Dionex CarboPac PA1 anion-exchange column using high-performance anion-exchange chromatography (HPAEC). Approximately half of the [(3)H]UTP was converted into [(3)H]UDP-GalA and the remaining 50% was recovered as [(3)H]UDP-GlcA. Both products were purified and the identity of the [(3)H]UDP-GalA was confirmed by its conversion into [(3)H]UDP-GlcA by UDP-GlcA-4-epimerase. The enzymatic synthesis of diverse nucleotide sugars radiolabeled in the nucleotide by the use of nucleotide-converting enzymes, combined with the high-resolution separation of the nucleotide sugars and their purification by HPAEC, can provide unique substrates required for the study of diverse nucleotide sugar transporters.  相似文献   

17.
The beta-phosphoro[35S]thioate analogue of UDP-glucose ((beta-35S)UDP-Glc) is utilized with approximately the same efficiency as the parent compound by the UDP-glucose:glycoprotein glucose-1-phosphotransferase (glucosyltransferase), which catalyzes the transfer of alpha Glc-1-P from UDP-Glc to mannose-containing oligosaccharides on acceptor glycoproteins. The same endogenous acceptor glycoproteins are labeled by the glucosyltransferase using [beta-32P]UDP-Glc and (beta-35S)UDP-Glc. However, in liver homogenates, incorporation from [beta-32P]UDP-Glc ceases to increase after about 4 min of incubation, while incorporation from (beta-35S)UDP-Glc persists for at least 1 h. This difference is due to an approx. 10-fold slower hydrolytic rate for the phosphorothioate analogue than for the parent compound, a finding similar to previous work showing that a variety of nucleases and phosphodiesterases are less efficient in cleaving phosphorothioate DNA than the native polymer.  相似文献   

18.
The regulation of glucuronidation during hypoxia was studied in isolated hepatocytes by analysing the dependence of acetaminophen glucuronidation rate on the intracellular concentrations of UTP, glucose 1-phosphate, UDP-glucose and UDP-glucuronic acid. The steady-state concentrations of these metabolites in cells from fed and starved rats were altered by exposure to various hypoxic O2 concentrations and by adding exogenous glucose. Changes in glucuronidation rate under all conditions were explained in terms of the concentrations of the substrates for UDP-glucose pyrophosphorylase, i.e. UTP and glucose 1-phosphate. Steady-state rates for the UDP-glucose pyrophosphorylase reaction, calculated by using published kinetic constants and measured glucose 1-phosphate and UTP concentrations, were in agreement with the measured glucuronidation rates. Thus the UDP-glucose pyrophosphorylase reaction is the key regulatory site for drug glucuronidation during hypoxia. Control at this site indicates that glucuronidation in vivo may be generally depressed in pathological conditions involving hypoxia and energy (calorie) malnutrition.  相似文献   

19.
Members of the Burkholderia cepacia complex (BCC) are serious respiratory pathogens in immunocompromised individuals and in patients with cystic fibrosis (CF). They are exceptionally resistant to many antimicrobial agents and have the capacity to spread between patients, leading to a decline in lung function and necrotizing pneumonia. BCC members often express a mucoid phenotype associated with the secretion of the exopolysaccharide (EPS) cepacian. There is much evidence supporting the fact that cepacian is a major virulence factor of BCC. UDP-glucose dehydrogenase (UGD) is responsible for the NAD-dependent 2-fold oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronic acid (UDP-GlcA), which is a key step in cepacian biosynthesis. Here, we report the structure of BceC, determined at 1.75-Å resolution. Mutagenic studies were performed on the active sites of UGDs, and together with the crystallographic structures, they elucidate the molecular mechanism of this family of sugar nucleotide-modifying enzymes. Superposition with the structures of human and other bacterial UGDs showed an active site with high structural homology. This family contains a strictly conserved tyrosine residue (Y10 in BceC; shown in italics) within the glycine-rich motif (GXGYXG) of its N-terminal Rossmann-like domain. We constructed several BceC Y10 mutants, revealing only residual dehydrogenase activity and thus highlighting the importance of this conserved residue in the catalytic activity of BceC. Based on the literature of the UGD/GMD nucleotide sugar 6-dehydrogenase family and the kinetic and structural data we obtained for BceC, we determined Y10 as a key catalytic residue in a UGD rate-determining step, the final hydrolysis of the enzymatic thioester intermediate.  相似文献   

20.
Galactose-1-phosphate uridyltransferase (EC 2.7.7.10), responsible for the conversion of galactose-1-phosphate (Gal-1-P) to uridine diphosphate galactose (UDPgal) was examined in fruit peduncles of Cucumis sativus L. Two uridyltransferases (pyrophosphorylases), from I and II, were partially purified and resolved on a diethylamino-ethyl-cellulose column. Form I can utilize glucose-1-phosphate (Glc-1-P), while form II can utilize either Gal-1-P or Glc-1-P, with a preference for Gal-1-P. Form I was more heat stable than form II. Both Glc-1-P and Gal-1-P activities of form II were inactivated at the same rate by heating. The finding of a uridyltransferase with preference for Gal-1-P indicates that cucumber may have a Gal-1-P uridyltransferase (pyrophosphorylase) pathway for the catabolism of stachyose in the peduncles. The absence of the enzyme UDP-glucose-hexose-1-phosphate uridyltransferase (EC 2.7.7.12) in this tissue rules out catabolism by the classical Leloir pathway. The incorporation of carbon from UDPglc into Glc-1-P as opposed to sucrose may be regulated by the activities of the uridyltransferases. Pyrophosphate, in the same concentration range, inhibits UDP-gal formation (Ki=0.58±0.10 mM) and stimulates Glc-1-P formation. The ratio of units of pyrophosphatase to units of Gal-1-P uridyltransferase was higher in peduncles from growing fruit than from unpollinated fruit. Modulation of carbon partitioning through a uridyltransferase pathway may be a factor controlling growth of the cucumber fruit.Abbreviations Gal-1-P Galactose-1-phosphate - Glc-1-P glucose-1-phosphate - UDPgal uridine diphosphate galactose - UDPglc uridine diphosphate glucose Paper No. 6908 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号