首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradation of microbial and synthetic polyesters by fungi   总被引:5,自引:0,他引:5  
A variety of biodegradable polyesters have been developed in order to obtain useful biomaterials and to reduce the impact of environmental pollution caused by the large-scale accumulation of non-degradable waste plastics. Polyhydroxyalkanoates, poly(epsilon-caprolactone), poly( l-lactide), and both aliphatic and aromatic polyalkylene dicarboxylic acids are examples of biodegradable polyesters. In general, most aliphatic polyesters are readily mineralized by a number of aerobic and anaerobic microorganisms that are widely distributed in nature. However, aromatic polyesters are more resistant to microbial attack than aliphatic polyesters. The fungal biomass in soils generally exceeds the bacterial biomass and thus it is likely that fungi may play a considerable role in degrading polyesters, just as they predominantly perform the decomposition of organic matter in the soil ecosystem. However, in contrast to bacterial polyester degradation, which has been extensively investigated, the microbiological and environmental aspects of fungal degradation of polyesters are unclear. This review reports recent advances in our knowledge of the fungal degradation of microbial and synthetic polyesters and discusses the ecological importance and contribution of fungi in the biological recycling of waste polymeric materials in the biosphere.  相似文献   

2.
Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(l-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.  相似文献   

3.
The escalating problems regarding the treatment of plastic waste materials have led to development of biodegradable plastics. At present, a number of aliphatic polyesters; such as poly[(R)-3-hydroxybutyrate] (PHB), poly(l-lactide), polycaplolactone, poly(ethylene succinate) and poly(butylene succinate) have been developed. Among these aliphatic polyesters, PHB is one of the most attractive since it can undergo biodegradation at various environmental conditions and has properties similar to polypropylene. Although much effort has been made to produce PHB and its copolyesters from renewable resources or through microbial processes, their commercialization and widespread application are still not economically attractive compared to conventional non-biodegradable plastic. Moreover, wide application of PHB and its copolyesters as biodegradable plastic have not only been limited by the cost of production but also by their stinky smell during industrial processing. However, (R)-3-hydroxybutyric acid, a monomer of PHB has wide industrial and medical applications. (R)-3-hydroxybutyric acid can also serve as chiral precursor for synthesis of pure biodegradable PHB and its copolyesters. A number of options are available for production of (R)-3-hydroxybutyric acid. This review discusses each of these options to assess the alternatives that exist for production of pure biodegradable PHB and its copolyesters with good properties.  相似文献   

4.
The discovery and chemical identification, in the 1920s, of the aliphatic polyester: poly(3-hydroxybutyrate), PHB, as a granular component in bacterial cells proceeded without any of the controversies which marked the recognition of macromolecules by Staudinger. Some thirty years after its discovery, PHB was recognized as the prototypical biodegradable thermoplastic to solve the waste disposal challenge. The development effort led by Imperial Chemical Industries Ltd., encouraged interdisciplinary research from genetic engineering and biotechnology to the study of enzymes involved in biosynthesis and biodegradation. From the simple PHB homopolyester discovered by Maurice Lemoigne in the mid-twenties, a family of over 100 different aliphatic polyesters of the same general structure has been discovered. Depending on bacterial species and substrates, these high molecular weight stereoregular polyesters have emerged as a new family of natural polymers ranking with nucleic acids, polyamides, polyisoprenoids, polyphenols, polyphosphates, and polysaccharides. In this historical review, the chemical, biochemical and microbial highlights are linked to personalities and locations involved with the events covering a discovery timespan of 75 years.  相似文献   

5.
Application of polyester-degrading enzymes should be considered as an eco-friendly alternative to chemical recycling due to the huge plastic waste disposal nowadays. Many hydrolases from several fungi and bacteria have been discovered and successfully evaluated for their activity towards different aliphatic polyesters (PHA, PBS, PBSA, PCL, PLA), aromatic polyesters (PET, PBT, PMT) as well as their co-polyesters (PBST, PBAT, PBSTIL). This revision gives an up-to-date overview on the main biochemical features and biotechnological applications of those reported enzymes which are able to degrade polyester-based plastics, including different microbial polyester depolymerases, esterases, cutinase-like enzymes and lipases. Summarized information includes available protein sequences with the corresponding accession numbers deposited in NCBI server, 3D resolved structures, and data about optimal conditions for enzymatic activity and stability of many of these microbial enzymes that would be helpful for researchers in this topic. Although screening and identification of new native polyester hydrolases from microbial sources is undeniable according to literature, we briefly highlight the importance of the design of improved enzymes towards recalcitrant aromatic polyesters through different approaches that include site-directed mutagenesis and surface protein engineering.  相似文献   

6.
Plastics, used everyday, are mostly synthetic polymers derived from fossil resources, and their accumulation is becoming a serious concern worldwide. Polyhydroxyalkanoates (PHAs) are naturally produced polyesters synthesized and intracellularly accumulated by many different microorganisms. PHAs are good alternatives to petroleum‐based plastics because they possess a wide range of material properties depending on monomer types and molecular weights. In addition, PHAs are biodegradable and can be produced from renewable biomass. Thus, producing PHAs through the development of high‐performance engineered microorganisms and efficient bioprocesses gained much interest. In addition, non‐natural polyesters comprising 2‐hydroxycarboxylic acids as monomers have been produced by fermentation of metabolically engineered bacteria. For example, poly(lactic acid) and poly(lactic acid‐co‐glycolic acid), which have been chemically synthesized using the corresponding monomers either fermentatively or chemically produced, can be produced by metabolically engineered bacteria by one‐step fermentation. Recently, PHAs containing aromatic monomers could be produced by fermentation of metabolically engineered bacteria. Here, metabolic engineering strategies applied in developing microbial strains capable of producing non‐natural polyesters in a stepwise manner are reviewed. It is hoped that the detailed strategies described will be helpful for designing metabolic engineering strategies for developing diverse microbial strains capable of producing various polymers that can replace petroleum‐derived polymers.  相似文献   

7.
With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.  相似文献   

8.
ABSTRACT

With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.  相似文献   

9.
Aromatic/aliphatic copolyesters containing hydrophilic moieties in the main chain or side chain were synthesized by bulk polycondensation of aromatic monomers without or with solubilizing substituents and aliphatic monomers. Hydrolytic and enzymatic degradation studies were carried out in vitro at 37 degrees C in pH 7.4 phosphate buffer and in Tris-HCl buffer containing proteinase K. The results indicate that liquid-crystalline aromatic/aliphatic copolyesters are degradable hydrolytically as well as enzymatically. The change in composition and morphology of the polyester films were monitored by nuclear magnetic resonance and scanning electron microscopy. The results suggested that aromatic species and aliphatic moieties could be released into aqueous solution during hydrolytic degradation of aromatic/aliphatic copolyesters with ethyleneoxy groups on the side chain. Modifying aromatic species with hydrophilic groups in aromatic/aliphatic copolyesters was an efficient method to improve degradability and biocompatibility due to improved solubility of degradation products in aqueous solution. Mechanical tests indicated that the copolyesters exhibited good mechanical properties prior to degradation, which can be of relevance for bone tissue engineering.  相似文献   

10.
当前社会塑料制品的使用需求持续增加,塑料垃圾处理压力不断增大,减缓塑料污染成为当务之急,生物可降解塑料因可在一定生物活性环境下较快降解而备受关注,具有广阔的应用前景。生物可降解塑料降解条件复杂,影响因素众多,对不同生物可降解塑料降解规律,降解微生物和功能酶的透彻掌握,是实现其全面利用和高效资源化处理处置的基础和前提。文章系统梳理了常见生物可降解塑料的种类、性能、优缺点和主要用途,全面综述了生物可降解塑料的降解机理、降解微生物和功能酶,以及生物可降解塑料在不同环境条件下的降解周期和程度,以期为生物可降解塑料的微生物降解研究提供借鉴,为生物可降解塑料废弃物的高效处理处置和彻底降解提供科学参考。  相似文献   

11.
Review Degradation of microbial polyesters   总被引:1,自引:0,他引:1  
Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.  相似文献   

12.
王慧  吴敬  陈晟  夏伟 《生物工程学报》2023,39(5):1987-1997
随着废弃塑料带来的环境污染越来越严重,生物可降解聚酯已成为大众关注的焦点。聚己二酸/对苯二甲酸丁二醇酯[poly(butylene adipate-co-terephthalate),PBAT]是脂肪族和芳香族共聚形成的生物可降解聚酯,兼具两者的优异性能。针对PBAT在自然条件下对降解环境要求严格且降解周期长的不足之处,本研究探究了角质酶在PBAT降解中的应用和对苯二甲酸-丁二醇酯(butylene terephthalate,BT)含量对PBAT生物降解性的影响,以实现对PBAT降解速率的提升。选取5种不同来源的聚酯降解酶对PBAT进行降解应用并比较出降解效果最优的酶,并测定了含有不同BT含量的PBAT聚酯的降解效率。结果表明,角质酶ICCG为降解效果最好的酶,且BT含量越高PBAT的降解率越低。此外,还确定了角质酶ICCG对高BT含量的PBAT(H)降解的最适温度、最适缓冲液类型、最适pH、最适E/S(enzyme to substrate)和最适底物浓度比分别为75℃、Tris-HCl、9.0、0.4%和1.0%。本研究结果可为角质酶在PBAT降解中的应用提供一定的理论依据和实验...  相似文献   

13.
In the last 10 years, biodegradable aliphatic polyesters, such as poly(lactic-co-glycolic acid) (PLGA), have attracted increasing attention for their use as scaffold materials in bone tissue engineering because their degradation products can be removed by natural metabolic pathways. However, one main concern with the use of these specific polymers is that their degradation products reduce local pH, which in turn induces an inflammatory reaction and damages bone cell health at the implant site. Thus, the objective of the present in vitro study was to investigate the degradation behavior of PLGA when added with dispersed titania nanoparticles. The results of this study provided the first evidence that the increased dispersion of nanophase titania in PLGA decreased the harmful change in pH normal for PLGA degradation. Moreover, previous studies have demonstrated that the increased dispersion of titania nanoparticles into PLGA significantly improved osteoblast (bone-forming cell) functions (such as adhesion, collagen synthesis, alkaline phosphatase activity, and calcium-containing minerals deposition). In this manner, nanophase titania-PLGA composites may be promising scaffold materials for more effective orthopedic tissue engineering applications.  相似文献   

14.
As concerns increase regarding sustainable industries and environmental pollutions caused by the accumulation of non-degradable plastic wastes, bio-based polymers, particularly biodegradable plastics, have attracted considerable attention as potential candidates for solving these problems by substituting petroleum-based plastics. Among these candidates, polyhydroxyalkanoates (PHAs), natural polyesters that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and material properties similar to those of commodity plastics. Accordingly, substantial efforts have been made to gain a better understanding of mechanisms related to the biosynthesis and properties of PHAs and to develop natural and recombinant microorganisms that can efficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications.Recent advances in biotechnology, including those related to evolutionary engineering, synthetic biology, and systems biology, can provide efficient and effective tools and strategies that reduce time, labor, and costs to develop microbial platform strains that produce desired chemicals and materials. Adopting these technologies in a systematic manner has enabled microbial fermentative production of non-natural polyesters such as poly(lactate) [PLA], poly(lactate-co-glycolate) [PLGA], and even polyesters consisting of aromatic monomers from renewable biomass-derived carbohydrates, which can be widely used in current chemical industries.In this review, we present an overview of strain development for the production of various important natural PHAs, which will give the reader an insight into the recent advances and provide indicators for the future direction of engineering microorganisms as plastic cell factories. On the basis of our current understanding of PHA biosynthesis systems, we discuss recent advances in the approaches adopted for strain development in the production of non-natural polyesters, notably 2-hydroxycarboxylic acid-containing polymers, with particular reference to systems metabolic engineering strategies.  相似文献   

15.
Polyhydroxyalkanoates (PHA) are polyesters of bacterial origin that have properties of biodegradable plastics and elastomers. Synthesis of PHA in crop plants would allow the large-scale production and use of these biodegradable and renewable polymers as substitutes for petroleum-derived plastics. Synthesis of a diversity of PHAs in plants, such as Arabidopsis thaliana, rapeseed, corn and cotton, has been demonstrated through the genetic engineering of metabolic pathways in the cytoplasm, plastid and peroxisome. PHA can also be used as a novel tool to study various aspects of plant metabolism, such as the regulation of carbon flux to the fatty acid biosynthetic and degradation pathways.  相似文献   

16.
One important factor affecting the process of tissue regeneration is scaffold stiffness loss, which should be properly balanced with the rate of tissue regeneration. The aim of the research reported here was to develop a computer tool for designing the architecture of biodegradable scaffolds fabricated by melt-dissolution deposition systems (e.g. Fused Deposition Modeling) to provide the required scaffold stiffness at each stage of degradation/regeneration. The original idea presented in the paper is that the stiffness of a tissue engineering scaffold can be controlled during degradation by means of a proper selection of the diameter of the constituent fibers and the distances between them. This idea is based on the size-effect on degradation of aliphatic polyesters. The presented computer tool combines a genetic algorithm and a diffusion-reaction model of polymer hydrolytic degradation. In particular, we show how to design the architecture of scaffolds made of poly(DL-lactide-co-glycolide) with the required Young’s modulus change during hydrolytic degradation.  相似文献   

17.
Biological degradation of plastics: a comprehensive review   总被引:2,自引:0,他引:2  
Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro.  相似文献   

18.
Aliphatic polyesters: great degradable polymers that cannot do everything   总被引:2,自引:0,他引:2  
Vert M 《Biomacromolecules》2005,6(2):538-546
Nowadays the open and the patent literatures propose a large number of polymers whose main chains can be degraded usefully. Among these degradable polymers, aliphatic polyester-based polymeric structures are receiving special attention because they are all more or less sensitive to hydrolytic degradation, a feature of interest when compared with the fact that living systems function in aqueous media. Only some of these aliphatic polyesters are enzymatically degradable. A smaller number is biodegradable, and an even more limited number is biorecyclable. To be of practical interest, a degradable polymer must fulfill many requirements that depend very much on the targeted application, on the considered living system, and on living conditions. It is shown that aliphatic polyester structures made of repeating units that can generate metabolites upon degradation or biodegradation like poly(beta-hydroxy alkanoate)s and poly(alpha-hydroxy alkanoate)s are of special interest. Their main characteristics are confronted to the specifications required by various potential sectors of applications, namely, surgery, pharmacology, and the environment. It is shown that degradation, bioresorption, and biorecycling that are targets when one wants to respect living systems are also drastic limiting factors when one wants to achieve a device of practical interest. Finding a universal polymer that would be the source of all the polymeric biomaterials needed to work in contact with living organisms of the various life kingdoms and respect them remains a dream. On the other hand, finding one polymeric structure than can fulfill the requirements of one niche application remains a big issue.  相似文献   

19.
The environmental consequences of plastic waste have impacted all kingdoms of life in terrestrial and aquatic ecosystems. However, as the burden of plastic pollution has increased, microbes have evolved to utilize anthropogenic polymers as nutrient sources. Of depolymerase enzymes, the best characterized is PETase, which hydrolyzes aromatic polyesters. PETase engineering has made impressive progress in recent years; however, further optimization of engineered PETase toward industrial application has been limited by lower throughput techniques used in protein purification and activity detection. Here, we address these deficiencies through development of a higher-throughput PETase engineering platform. Secretory expression via YebF tagging eliminates lysis and purification steps, facilitating production of large mutant libraries. Fluorescent detection of degradation products permits rapid screening of depolymerase activity in microplates as opposed to serial chromatographic methods. This approach enabled development of more stable PETase, semi-rational (SR) PETase variant containing previously unpublished mutations. SR-PETase releases 1.9-fold more degradation products and has up to 7.4-fold higher activity than wild-type PETase over 10 days at 40°C. These methods can be adapted to a variety of chemical environments, enabling screening of PETase mutants in applications-relevant conditions. Overall, this work promises to facilitate advancements in PETase engineering toward industrial depolymerization of plastic waste.  相似文献   

20.
Aromatic polymers are widely used in products ranging from optical lenses to milk bottles because of their strength, thermal durability, and high glass transition temperatures. All of the commonly used routes employed to generate aromatic polycarbonates and polyesters generate large amounts of waste as by-products and require high energy input. For these reasons, alternate routes to aromatic polymers which involve either less energy input or less waste generation are being investigated. One such route may be enzymatic. Herein we describe enzyme-catalyzed AA-BB condensation polymerizations to form aromatic polycarbonates and polyesters with six different aromatic diols and molecular weights of up to 5,200 Daltons are generated. In addition, for reactions with benzenedimethanol the enzyme exhibits regioselectivity for parahydroxyls over meta- and orthohydroxyls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号