首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The barley Mla locus encodes 28 characterized resistance specificities to the biotrophic fungal pathogen barley powdery mildew. We describe a single-cell transient expression assay using entire cosmid DNAs to pinpoint Mla1 within the complex 240-kb Mla locus. The MLA1 cDNA encodes a 108-kD protein containing an N-terminal coiled-coil structure, a central nucleotide binding domain, and a C-terminal leucine-rich repeat region; it also contains a second short open reading frame at the 5' end that has a possible regulatory function. Although most Mla-encoded resistance specificities require Rar1 for their function, we used the single-cell expression system to demonstrate that Mla1 triggers full resistance in the presence of the severely defective rar1-2 mutant allele. Wheat contains an ortholog of barley Mla, designated TaMla, that is tightly linked to (0.7 centimorgan) but distinct from a tested resistance specificity at the complex Pm3 locus to wheat powdery mildew. Thus, the most polymorphic powdery mildew resistance loci in barley and wheat may have evolved in parallel at two closely linked homeoloci. Barley Mla1 expressed in wheat using the single-cell transformation system failed to trigger a response to any of the wheat powdery mildew Avr genes tested, indicating that AvrMla1 is not genetically fixed in wheat mildew strains.  相似文献   

2.
3.
Powdery mildew of barley, caused by Erysiphe graminis f. sp. hordei, is a model system for investigating the mechanism of gene-for-gene interaction between large-genome cereals and obligate-fungal pathogens. A large number of loci that confer resistance to this disease are located on the short arm of chromosome 5(1H). The Mla resistance-gene cluster is positioned near the telomeric end of this chromosome arm. AFLP-, RAPD-, and RFLP-derived markers were used to saturate the Mla region in a high-resolution recombinant population segregating for the (Mla6 + Mla14) and (Mla13 + Ml-Ru3) resistance specificities. These tightly linked genetic markers were used to identify and develop a physical contig of YAC and BAC clones spanning the Mla cluster. Three distinct NBS-LRR resistance-gene homologue (RGH) families were revealed via computational analysis of low-pass and BAC-end sequence data derived from Mla-spanning clones. Genetic and physical mapping delimited the Mla-associated, NBS-LRR gene families to a 240-kb interval. Recombination within the RGH families was at least 10-fold less frequent than between markers directly adjacent to the Mla cluster.  相似文献   

4.
5.
A large number of resistance specificities to the powdery mildew fungus Blumeria graminis f. sp. hordei map to the barley Mla locus. This complex locus harbors multiple members of three distantly related gene families that encode proteins that contain an N-terminal coiled-coil (CC) structure, a central nucleotide binding (NB) site, a Leu-rich repeat (LRR) region, and a C-terminal non-LRR (CT) region. We identified Mla12, which encodes a CC-NB-LRR-CT protein that shares 89 and 92% identical residues with the known proteins MLA1 and MLA6. Slow Mla12-triggered resistance was altered dramatically to a rapid response by overexpression of Mla12. A series of reciprocal domains swaps between MLA1 and MLA6 identified in each protein recognition domain for cognate powdery mildew fungus avirulence genes (AvrMla1 and AvrMla6). These domains were within different but overlapping LRR regions and the CT part. Unexpectedly, MLA chimeras that confer AvrMla6 recognition exhibited markedly different dependence on Rar1, a gene required for the function of some but not all Mla resistance specificities. Furthermore, uncoupling of MLA6-specific function from RAR1 also uncoupled the response from SGT1, a protein known to associate physically with RAR1. Our findings suggest that differences in the degree of RAR1 dependence of different MLA immunity responses are determined by intrinsic properties of MLA variants and place RAR1/SGT1 activity downstream of and/or coincident with the action of resistance protein-containing recognition complexes.  相似文献   

6.
根据大麦MLa基因的保守区域设计了4对家族性引物.通过用家族性引物对小麦(Triticum aestivum L.)抗白粉病品系TAM104R在接种和未接种两种条件下的基因差异表达进行RT-PCR分析,获得了一个在接种条件下特异表达的基因片段RJ-3-3L,并用RACE方法获得了其cDNA全长,命名为TaMla1.序列比对显示:TaMlal与大麦MLa位点的基因家族成员具有高度同源性,TaMla1编码的氨基酸功能基序扫描表明其为一个CC-NBS-LRR型抗病蛋白.用一套中国春缺-四体材料将TaMla1定位到了小麦的1A染色体上,这正是大麦MLa基因位点在小麦中的同源区段所在的染色体.这些结果表明,TaMla1为一个类MLa抗白粉病基因.同时我们还获得了一个在不接种条件下特异表达的基因片段RW-2-3L,序列分析表明它与MLa基因也高度同源,推测其可能是一个小麦白粉病的敏感基因或抗性负调控因子.  相似文献   

7.
D hordein, a prolamin storage protein of barley endosperms, is highly homologous to the high molecular weight (HWM) glutenin subunits, which are the major determinants of bread-making quality in wheat flour. In hexaploid wheat (AABBDD), each genome contains two paralogous copies of HMW-glutenin genes that encode the x- and y-type HMW-glutenin subunits. Previously, we reported the sequence analysis of a 102-kb genomic region that contains the HMW-glutenin locus of the D genome from Aegilops tauschii, the donor of the D genome of hexaploid wheat. Here, we present the sequence analysis of a 120-kb D-hordein region of the barley genome, a more distantly related member of the Triticeae grass tribe. Comparative sequence analysis revealed that gene content and order are generally conserved. Genes included in both of these orthologous regions are arranged in the following order: a Xa21-like receptor kinase, an endosperm globulin, an HMW prolamin, and a serine (threonine) protein kinase. However, in the wheat D genome, a region containing both the globulin and HMW-glutenin gene was duplicated, indicating that this duplication event occurred after the separation of the wheat and barley genomes. The intergenic regions are divergent with regard to the sequence and structural organization. It was found that different types of retroelements are responsible for the intergenic structure divergence in the wheat and barley genomes. In the barley region, we identified 16 long terminal repeat (LTR) retrotransposons in three distinct nested clusters. These retroelements account for 63% of the contig sequence. In addition, barley D hordein was compared with wheat HMW glutenins in terms of cysteine residue conservation and repeat domain organization.  相似文献   

8.
9.
Nineteen barley landraces collected from Morocco were screened for resistance to powdery mildew. The landraces originated from the collection at the Polish Gene Bank, IHAR Radzików, Poland. The fifteen landraces tested showed powdery mildew resistance reactions and 35 single plant lines were selected. Twenty-one of these lines were tested in the seedling stage with 30, four lines with 17 and another 10 lines with 23 differential isolates of powdery mildew, respectively. The isolates were chosen according to their virulence spectra observed on the Pallas isolines differential set. Nine lines (E 1029-1-1, E 1042-2-2, E 1050-1-1, E 1054-5-1, E 1056-2-5, E 1056-3-1, E 1061-1-1, E 1061-1-3 and E 1067-1-2) which originated from seven landraces showed resistance to all prevalent European powdery mildew virulence genes. The most frequent score was 2 and 16 lines showed this reaction for inoculation with most isolates used. The distribution of reaction type indicated that about 77% of all reaction types observed were classified as powdery mildew resistance (scores 0, 1 and 2). In all lines the presence of unknown genes alone or in combinations with specific ones was postulated. Four different resistance alleles ( Mlat , Mla6 , Mla14 and Mla12 ) were postulated to be present in 10 tested lines alone or in combination. Alleles Mlat , Mla6 and Mla14 were postulated to be present in four and Mla12 in two tested lines, respectively. The value of barley landraces for diversification of resistance genes for powdery mildew is discussed.  相似文献   

10.
根据大麦MLa基因的保守区域设计了4对家族性引物。通过用家族性引物对小麦(Triticum aestivum L.)抗白粉病品系TAM104R在接种和未接种两种条件下的基因差异表达进行RT-PCR分析,获得了一个在接种条件下特异表达的基因片段RJ-3-3L, 并用RACE方法获得了其cDNA全长,命名为TaMla1。序列比对显示: TaMla1与大麦MLa位点的基因家族成员具有高度同源性,TaMla1编码的氨基酸功能基序扫描表明其为一个CC-NBS-LRR型抗病蛋白。用一套中国春缺-四体材料将TaMla1定位到了小麦的1A染色体上,这正是大麦MLa基因位点在小麦中的同源区段所在的染色体。这些结果表明,TaMla1为一个类MLa抗白粉病基因。同时我们还获得了一个在不接种条件下特异表达的基因片段RW-2-3L,序列分析表明它与MLa 基因也高度同源,推测其可能是一个小麦白粉病的敏感基因或抗性负调控因子。  相似文献   

11.
The Rar1 gene, identified in the context of race-specific powdery mildew resistance mediated by the Hordeum vulgare (barley) resistance (R) gene Mla12, is required for the function of many R-mediated defense responses in mono- and dicotyledonous plant species. Mla resistance is associated with an oxidative burst and a subsequent cell death reaction of attacked cells. Rar1 mutants are impaired in these responses and, to identify genetic elements which negatively regulate the Mla12-triggered response, we have screened mutagenized Mla12 rar1 mutant populations for restoration of the resistance response. Here we describe the restoration of Mla12-specified resistance (rom1) mutant that restores features of disease resistance to a Blumeria graminis f. sp. hordei isolate expressing the avirulence gene AvrMla12 and retains susceptibility to an isolate lacking AvrMla12. Histochemical analyses show that, in rom1 mutant plants, a whole-cell oxidative burst and cell death response in attacked epidermal cells is restored in the incompatible interaction. Defense responses against tested inappropriate powdery mildews, B. graminis f. sp. tritici and Golovinomyces orontii, were diminished in rar1 mutant plants and enhanced in rom1 mutant plants relative to the wild type. These findings indicate antagonistic activities of Rar1 and Rom1 and reveal their contribution to nonhost and race-specific resistance responses.  相似文献   

12.
Interactions between barley and the powdery mildew pathogen, Blumeria graminis f. sp. hordei, (Bgh) are determined by unique combinations of host resistance genes, designated Mildew-resistance locus (Ml), and cognate pathogen avirulence genes. These interactions occur both dependent and independent of Rar1 (required for Mla12 resistance) and Sgt1 (Suppressor of G-two allele of skp1), which are differentially required for diverse plant disease-resistance pathways. We have isolated two new functional Mla alleles, Rar1-independent Mla7 and Rar1-dependent Mla10, as well as the Mla paralogs, Mla6-2 and Mla13-2. Utilizing the inherent diversity amongst Mla-encoded proteins, we identified the only two amino acids exclusively conserved in RAR1-dependent MLA6, MLA10, MLA12, and MLA13 that differ at the corresponding position in RAR1-independent MLA1 and MLA7. Two- and three-dimensional modeling places these residues on a predicted surface of the sixth leucine-rich repeat (LRR) domain at positions distinct from those within the beta-sheets hypothesized to determine resistance specificity. Site-directed mutagenesis of these residues indicates that RAR1 independence requires the presence of an aspartate at position 721, as mutation of this residue to a structurally similar, but uncharged, asparagine did not alter RAR1 dependence. These results demonstrate that a single-amino acid substitution in the sixth MLA LRR can alter host signaling but not resistance specificity to B. graminis.  相似文献   

13.
J H J?rgensen 《Génome》1996,39(3):492-498
Three recessive mutagen-induced alleles that partially suppress the phenotypic expression of the semidominant powdery mildew resistance gene Mla12 have been studied. When each suppressor is present in homozygous condition, the infection type 0, conferred by gene Mla12 when homozygous, is changed to intermediate infection types. The three suppressor lines were crossed with seven near-isogenic lines with different powdery mildew resistance genes and one, M100, was crossed with nine additional lines. Seedlings of parents and from the F1and F2 generations were tested with powdery mildew isolates that possessed the appropriate avirulence and virulence genes. The segregation of phenotypes in the F2 generation disclosed that the three suppressors affected the phenotypic expression of three resistance genes, whereas that of four resistance genes remained unaffected. The suppressor in mutant M100 affected the phenotypic expression of 9 of the 10 additional resistance genes present. It is suggested that the three suppressors are mutationally modified genes involved in host defence processes. This implies that different resistance genes employ different, but overlapping, spectra of defence processes, or signal transduction pathways. Key words : barley, Hordeum vulgare, powdery mildew, Erysiphe graminis hordei, mutation, resistance, suppressor.  相似文献   

14.
15.
Current information on barley resistance genes available from scientific papers and on-line databases is summarised. The recent literature contains information on 107 major resistance genes (R genes) against fungal pathogens (excluding powdery mildew), pathogenic viruses and aphids identified in Hordeum vulgare accessions. The highest number of resistance genes was identified against Puccinia hordei, Rhynchosporium secalis, and the viruses BaYMV and BaMMV, with 17, 14 and 13 genes respectively. There is still a lot of confusion regarding symbols for R genes against powdery mildew. Among the 23 loci described to date, two regions Mla and Mlo comprise approximately 31 and 25 alleles. Over 50 R genes have already been localised and over 30 mapped on 7 barley chromosomes. Four barley R genes have been cloned recently: Mlo, Rpg1, Mla1 and Mla6, and their structures (sequences) are available. The paper presents a catalogue of barley resistance gene symbols, their chromosomalocation and the list of available DNA markers useful in characterising cultivars and breeding accessions.  相似文献   

16.
Putting knowledge of plant disease resistance genes to work.   总被引:11,自引:0,他引:11  
Plant disease resistance genes trigger defence mechanisms upon recognition of pathogen compatibility factors, which are encoded by avirulence genes. Isolation of the barley powdery mildew resistance gene Mla opens the door to understanding the extensive allelic diversity of this locus. Completion of the Arabidopsis genome sequence enables the analysis of the complete set of R-gene homologues in a flowering plant. A new R gene, RPW8, conferring resistance in Arabidopsis to powdery mildew, reveals a new class of protein associated with pathogen recognition. New prospects for using R-gene polymorphism in agriculture are becoming apparent.  相似文献   

17.
In barley (Hordeum vulgare L.), the Mla locus conditions reaction to the powdery mildew fungus Erysiphe graminis f.sp. hordei. Enrichment for genetic recombinants in the Mla region is possible by screening for recombination events between the flanking endosperm storage proteins hordeins C and B. Reciprocal crosses were made between the Franger (C.I. 16151) and Rupee (C.I. 16155) lines carrying the (Mla6 + Mla14) and Mla13 alleles, respectively. Recombinants were identified from F2 segregants by analyzing the extracted hordein polypeptides by sodium dodecyl sulphate - polyacrylamide gel electrophoresis. Two hundred and seventy-six recombinant gametes were identified from the 1800 seeds that were screened. Recombination of Mla alleles was analyzed by inoculating F4 recombinant lines with three isolates of E. graminis (A27, 5874, and CR3), which recognize specific Mla alleles. The linkage order established is Hor1-Mla6-Mla13-Mla14-Hor2. The genetic distances between Hor1-Mla6, Mla6-Mla13, and Mla13-Hor2, obtained using Mapmaker 3.0b F3 intercross analysis, are 3.9, 0.2, and 5.2 cM, respectively.  相似文献   

18.
19.
Liu X  Lin F  Wang L  Pan Q 《Genetics》2007,176(4):2541-2549
The indica rice variety Kasalath carries Pi36, a gene that determines resistance to Chinese isolates of rice blast and that has been located to a 17-kb interval on chromosome 8. The genomic sequence of the reference japonica variety Nipponbare was used for an in silico prediction of the resistance (R) gene content of the interval and hence for the identification of candidate gene(s) for Pi36. Three such sequences, which all had both a nucleotide-binding site and a leucine-rich repeat motif, were present. The three candidate genes were amplified from the genomic DNA of a number of varieties by long-range PCR, and the resulting amplicons were inserted into pCAMBIA1300 and/or pYLTAC27 vectors to determine sequence polymorphisms correlated to the resistance phenotype and to perform transgenic complementation tests. Constructs containing each candidate gene were transformed into the blast-susceptible variety Q1063, which allowed the identification of Pi36-3 as the functional gene, with the other two candidates being probable pseudogenes. The Pi36-encoded protein is composed of 1056 amino acids, with a single substitution event (Asp to Ser) at residue 590 associated with the resistant phenotype. Pi36 is a single-copy gene in rice and is more closely related to the barley powdery mildew resistance genes Mla1 and Mla6 than to the rice blast R genes Pita, Pib, Pi9, and Piz-t. An RT-PCR analysis showed that Pi36 is constitutively expressed in Kasalath.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号