首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.

Background

Extended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production in Klebsiella pneumoniae and Escherichia coli are the commonest modes of drug resistance among these commonly isolated bacteria from clinical specimens. So the main purpose of our study was to determine the burden of ESBL and MBL production in E. coli and K. pneumoniae isolated from clinical samples. Further, the antimicrobial susceptibility patterns of E. coli and K. pneumoniae were also determined.

Methods

A cross-sectional study was conducted at Om Hospital and Research Centre, Kathmandu, Nepal by using the E. coli and K. pneumoniae isolated from different clinical samples (urine, pus, body fluids, sputum, blood) from May 2015 to December 2015. Antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique. Extended spectrum beta-lactamase production was detected by combined disc method using ceftazidime and ceftazidime/clavulanic acid discs and cefotaxime and cefotaxime/clavulanic acid discs. Similarly, metallo beta-lactamase production was detected by combined disc assay using imipenem and imipenem/ethylenediaminetetracetate discs. Bacteria showing resistance to at least three different classes of antibiotics were considered multidrug resistant (MDR).

Results

Of total 1568 different clinical samples processed, 268 (17.1%) samples were culture positive. Among which, E. coli and K. pneumoniae were isolated from 138 (51.5%) and 39 (14.6%) samples respectively. Of the total isolates 61 (34.5%) were ESBL producers and 7 (4%) isolates were found to be MBL producers. High rates of ESBL production (35.9%) was noted among the clinical isolates from outpatients, however no MBL producing strains were isolated from outpatients. Among 138 E. coli and 39 K. pneumoniae, 73 (52.9%) E. coli and 23 (59%) K. pneumoniae were multidrug resistant. The lowest rates of resistance was seen toward imipenem followed by piperacillin/tazobactam, amikacin and cefoperazone/sulbactam.

Conclusions

High rate of ESBL production was found in the E. coli and K. pneumoniae isolated from outpatients suggesting the dissemination of ESBL producing isolates in community. This is very serious issue and can’t be neglected. Regular monitoring of rates of ESBL and MBL production along with multidrug resistance among clinical isolates is very necessary.
  相似文献   

2.

Objective

To improve 1,3-propanediol production in Klebsiella pneumoniae, the effects of puuC expression in lactate- and lactate/2,3-butanediol-deficient strains were assessed.

Results

Overexpression of puuC (encoding an aldehyde dehydrogenase) inhibited 1,3-propanediol production and increased 3-hydroxypropionic acid formation in both lactate- and lactate/2,3-butanediol-deficient strains. An improvement in 1,3-propanediol production was only achieved in a lactate-deficient strain via moderate expression of puuC; at the end of the fermentation, 1,3-propanediol productivity increased by 14 % compared with the control. Further comparative analysis of the metabolic flux distributions in different strains indicated that 3-hydroxypropionic acid formation could play a considerable role in cell metabolism in K. pneumoniae.

Conclusion

An improvement in 3-hydroxypropionic acid formation would be beneficial for cell metabolism, which can be accomplished by enhancing 1,3-propanediol productivity in a lactate-deficient strain via moderate expression of puuC.
  相似文献   

3.

Introduction

Microorganisms catabolize carbon-containing compounds in their environment during growth, releasing a subset of metabolic byproducts as volatile compounds. However, the relationship between growth media and the production of volatile compounds has been largely unexplored to-date.

Objectives

To assess the core and media-specific components of the Klebsiella pneumoniae volatile metabolome via growth in four in vitro culture media.

Methods

Headspace volatiles produced by cultures of K. pneumoniae after growth to stationary phase in four rich media (brain heart infusion broth, lysogeny broth, Mueller-Hinton broth, and tryptic soy broth) were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Differences in the composition of headspace volatiles as a function of growth media were assessed using hierarchical clustering analysis (HCA) and principal component analysis (PCA).

Results

A total of 365 volatile compounds were associated with the growth of K. pneumoniae across all media, of which 36 (10%) were common to all growth media, and 148 (41%) were specific to a single medium. In addition, utilizing all K. pneumoniae-associated volatile compounds, strains clustered as a function of growth media, demonstrating the importance of media in determining the metabolic profile of this organism.

Conclusion

K. pneumoniae produces a core suite of volatile compounds across all growth media studied, although the volatile metabolic signature of this organism is fundamentally media-dependent.
  相似文献   

4.

Objectives

A Neissaria bacterial pilus sugar, bacillosamine, was synthesized and, for the first time, used as a probe to screen a single-chain variable fragment (scFv).

Results

Four Neisseria, Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria sicca and Neisseria subflava, and two negative controls, Streptococcus pneumoniae and Escherichia coli, were tested through ELISA, immunostaining and gold nanoparticle immunological assay. All results indicated that the selected scFv is feasible for the specific detection of Neisseria species via the recognition of bacillosamine.

Conclusions

The recombinant scFv could detect Neisseria strains at 106 CFU/ml.
  相似文献   

5.

Objectives

To investigate the outcomes of capsule lost on cell transformation efficiency and chemicals (1,3-propanediol, 2,3-butanediol, and 2-ketogluconic acid) production by Klebsiella pneumoniae.

Results

The cps gene cluster showed low sequence homology with pathogenic strains. The wza is a highly conserved gene in the cps cluster that encodes an outer membrane protein. A non-capsulated mutant was constructed by deletion of wza. Phenotype studies demonstrated that non-capsulated cells were less buoyant and easy to sediment. The transformation efficiency of the non-capsulated mutant reached 6.4 × 105 CFU μg?1 DNA, which is 10 times higher than that of the wild strain. 52.2 g 1,3-propanediol L?1, 30.7 g 2,3-butanediol L?1, and 175.9 g 2-ketogluconic acid L?1 were produced by non-capsulated mutants, which were 10–40% lower compared to wild strain. Furthermore, viscosities of the three fermentation broths decreased to approximately 1.3 cP from the range of 1.8–2.2 cP.

Conclusions

Non-capsulated K. pneumoniae mutants should allay concerns regarding biological safety, improve transformation efficiency, lower viscosity, and subsequently ameliorate the financial burden of the downstream process of chemicals production.
  相似文献   

6.

Objectives

To improve the production of 2,3-butanediol (2,3-BD) in Klebsiella pneumoniae, the genes related to the formation of lactic acid, ethanol, and acetic acid were eliminated.

Results

Although the cell growth and 2,3-BD production rates of the K. pneumoniae ΔldhA ΔadhE Δpta-ackA strain were lower than those of the wild-type strain, the mutant produced a higher titer of 2,3-BD and a higher yield in batch fermentation: 91 g 2,3-BD/l with a yield of 0.45 g per g glucose and a productivity of 1.62 g/l.h in fed-batch fermentation. The metabolic characteristics of the mutants were consistent with the results of in silico simulation.

Conclusions

K. pneumoniae knockout mutants developed with an aid of in silico investigation could produce higher amounts of 2,3-BD with increased titer, yield, and productivity.
  相似文献   

7.
8.

Background

There is conflicting evidence regarding the benefit of adjunctive corticosteroid therapy in patients with Mycoplasma pneumoniae pneumonia. We hypothesised that corticosteroid therapy could reduce mortality and length of stay (LOS) in such patients.

Methods

Adult patients with M. pneumoniae pneumonia from January 2010 to December 2013 were identified from the Japanese Diagnosis Procedure Combination inpatient database. The effects of low-dose and high-dose corticosteroid therapies on mortality, LOS, drug costs and hyperglycaemia requiring insulin treatment were evaluated using propensity score analyses.

Results

Eligible patients (n?=?2228) from 630 hospitals were divided into no-corticosteroid (n?=?1829), low-dose corticosteroid (n?=?267) and high-dose corticosteroid (n?=?132) groups. The propensity score-matched pairs were generated from no-corticoid and low-dose corticoid groups (251 pairs), or no-corticoid and high-dose corticosteroid groups (120 pairs). Adjunctive corticosteroid therapy did not decrease 30-day mortality. In addition, both low-dose and high-dose corticosteroid therapies were associated with increases in LOS. Furthermore, hyperglycaemia requiring insulin treatment and drug cost increased with corticosteroid use.

Conclusions

Adjunctive treatment with low-dose or high-dose corticosteroids may not be beneficial in M. pneumoniae pneumonia.
  相似文献   

9.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

10.

Introduction

Pseudomonas aeruginosa and Acinetobacter spp. are found to be associated with biofilm and metallo-β-lactamase production and are the common causes of serious infections mainly in hospitalized patients. So, the main aims of this study were to determine the rates of biofilm production and metallo beta-lactamase production (MBL) among the strains of Pseudomonas aeruginosa and Acinetobacter spp. isolated from hospitalized patients.

Methods

A total of 85 P. aeruginosa isolates and 50 Acinetobacter spp. isolates isolated from different clinical specimens from patients admitted to Shree Birendra Hospital, Kathmandu, Nepal from July 2013 to May 2014 were included in this study. The bacterial isolates were identified with the help of biochemical tests. Modified Kirby-Bauer disc diffusion technique was used for antimicrobial susceptibility testing. Combined disc diffusion technique was used for the detection of MBL production, while Congo red agar method and tube adherence method were used for detection of biofilm production.

Results

Around 16.4% of P. aeruginosa isolates and 22% of the strains of Acinetobacter spp. were metallo β-lactamase producers. Out of 85 P. aeruginosa isolates, 23 (27.05%) were biofilm producers according to tube adherence test while, only 13 (15.29%) were biofilm producers as per Congo red agar method. Similarly, out of 50 Acinetobacter spp. 7 (14%) isolates were biofilm producers on the basis of tube adherence test, while only 5 (10%) were positive for biofilm production by Congo red agar method. Highest rates of susceptibility of P. aeruginosa as well as Acinetobacter spp. were seen toward colistin.

Conclusion

In our study, biofilm production and metallo beta-lactamase production were observed among Pseudomonas aeruginosa and Acinetobacter spp. However, no statistically significant association could be established between biofilm production and metallo beta-lactamase production.
  相似文献   

11.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

12.

Introduction

The Deficiens Homologue 9-iaaM (DefH9-iaaM) gene is an ovule-specific auxin-synthesizing gene which is expressed specifically in placenta/ovules and promotes auxin-synthesis. It was introduced into the genome of two grape cultivars Thompson Seedless and Silcora and both transgenic cultivars had an increased number of berries per bunch.

Objectives

This study investigates the down-stream metabolic changes of Silcora and Thompson seedless grape cultivars when genetically modified through the insertion of the DefH9-iaaM gene into their genome.

Methods

The effects of the genetic modification upon the grape metabolome were evaluated through 1H-NMR and exploratory data analysis. Chemometric tools such as Interval Partial Least Squares regression and metabolite heatmaps were employed for scrutinizing the changes in the transgenic metabolome as compared to the wild type one.

Results

The results show that the pleiotropic effect on the grape metabolome as a function of the gene modifications is relatively low, although the insertion of the transgene caused a decrement in malic acid and proline and an increment in p-coumaric acid content. In addition, the concentration of malic acid was successfully correlated with the number of inserted copies of transgene in the Silcora cultivar, proving that the increased production of berries, promoted by the inserted gene, is achieved at the expense of a decrement in malic acid concentration.

Conclusion

NMR together with chemometrics is able to identify specific metabolites that were up- or down regulated in the genetically engineered plants allowing highlighting alterations in the down-stream metabolic pathways due to the up-stream genetic modifications.
  相似文献   

13.
14.

Background

The widespread Escherichia coli clone ST131 implicated in multidrug-resistant infections has been recently reported, the majority belonging to O25:H4 serotype and classified into five main virotypes in accordance with the virulence genes carried.

Methods

Pathogenicity Islands I and II (PAI-I and PAI-II) were determined using conventional PCR protocols from a set of four E. coli CTXR ST131 O25:H4/H30-Rx strains collected from healthy donors’ stool. The virulence genes patterns were also analyzed and compared them with the virotypes reported previously; then adherence, invasion, macrophage survival and biofilm formation assays were evaluated and AIEC pathotype genetic determinants were investigated.

Findings

Non-reported virulence patterns were found in our isolates, two of them carried satA, papA, papGII genes and the two-remaining isolates carried cnfI, iroN, satA, papA, papGII genes, and none of them belonged to classical ST131 virotypes, suggesting an endemic distribution of virulence genes and two new virotypes. The presence of PAI-I and PAI-II of Uropathogenic E. coli was determined in three of the four strains, furthermore adherence and invasion assays demonstrated higher degrees of attachment/invasion compared with the control strains. We also amplified intI1, insA and insB genes in all four samples.

Interpretation

The results indicate that these strains own non-reported virotypes suggesting endemic distribution of virulence genes, our four strains also belong to an AIEC pathotype, being this the first report of AIEC in México and the association of AIEC with healthy donors.
  相似文献   

15.

Background

Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum are able to infect horses. However, the extend to which Danish horses are infected and seroconvert due to these two bacteria is unknown. The aim of the present study was to evaluate the seroprevalence of B. burgdorferi sensu lato and A. phagocytophilum in Danish horses.

Methods

A total of 390 blood samples collected from all major regions of Denmark and with a geographical distribution corresponding to the density of the Danish horse population were analyzed. All samples were examined for the presence of antibodies against B. burgdorferi sensu lato and A. phagocytophilum by the use of the SNAP®4DX ® ELISA test.

Results

Overall, 29.0% of the horses were seropositive for B. burgdorferi sensu lato whereas 22.3% were seropositive for A. phagocytophilum.

Conclusions

Antibodies against B burgdorferi sensu lato and A. phagocytophilum are commonly found among Danish horses thus showing that Danish horses are frequently infected by these organisms.
  相似文献   

16.

Objectives

To investigate the mode of action of leucocin K7 against Listeria monocytogenes and to assess its inhibitory effect on Lis. monocytogenes in refrigerated milk.

Results

A bacteriocin-producing strain, Leuconostoc mesenteroides K7, was isolated from a fermented pickle. The bacteriocin, leucocin K7, exhibited antagonistic activity against Lis. monocytogenes with an MIC of 28 µg/ml. It was sensitive to proteaseS and displayed good thermal stability and broad active pH range. Leucocin K7 had no effect on the efflux of ATP from Lis. monocytogenes but triggered the efflux of K+ and the intracellular hydrolysis of ATP. It also dissipated the transmembrane electrical potential completely and transmembrane pH gradient partially. It 80 AU/ml inhibited the growth of Lis. monocytogenes by 2.3–3.9 log units in milk; when combined with glycine (5 mg/ml), it completely eliminated viable Lis. monocytogenes over 7 days

Conclusion

Leucocin K7 shows different mode of action from nisin and may have potential application in milk preservation.
  相似文献   

17.

Objective

Capsular polysaccharide (PS) of Streptococcus pneumoniae is a key virulence factor and typically conjugated with a carrier protein. It is necessary to improve the immunogenicity of the conjugate vaccine against S. pneumoniae.

Results

A phenyl linker between tetanus toxoid (TT) and S. pneumoniae Type 14 PS was used to improve the PS-specific immunogenicity of the conjugate vaccine. As compared with the one with the amyl linker (PS-TT), the conjugate with the phenyl linker (PS-phe-TT) decreased the TT-specific IgG titers and significantly increased the PS-specific IgG titers and the IL-5 level.

Conclusion

The phenyl linker could potentiate a robust humoral immune response to PS by decreasing the carrier-induced epitopic suppression effect. PS-phe-TT was expected to act as an effective vaccine against S. pneumoniae.
  相似文献   

18.

Background

Klebsiella variicola was very recently described as a new bacterial species and is very closely related to Klebsiella pneumoniae; in fact, K. variicola isolates were first identified as K. pneumoniae. Therefore, it might be the case that some isolates, which were initially classified as K. pneumoniae, are actually K. variicola. The aim of this study was to devise a multiplex-PCR probe that can differentiate isolates from these sister species.

Result

This work describes the development of a multiplex-PCR method to identify K. variicola. This development was based on sequencing a K. variicola clinical isolate (801) and comparing it to other K. variicola and K. pneumoniae genomes. The phylogenetic analysis showed that K. variicola isolates form a monophyletic group that is well differentiated from K. pneumoniae. Notably, the isolate K. pneumoniae 342 and K. pneumoniae KP5-1 might have been misclassified because in our analysis, both clustered with K. variicola isolates rather than with K. pneumoniae. The multiplex-PCR (M-PCR-1 to 3) probe system could identify K. variicola with high accuracy using the shared unique genes of K. variicola and K. pneumoniae genomes, respectively. M-PCR-1 was used to assay a collection of multidrug-resistant (503) and antimicrobial-sensitive (557) K. pneumoniae clinical isolates. We found K. variicola with a prevalence of 2.1% (23/1,060), of them a 56.5% (13/23) of the isolates were multidrug resistant, and 43.5% (10/23) of the isolates were antimicrobial sensitive. The phylogenetic analysis of rpoB of K. variicola-positive isolates identified by multiplex-PCR support the correct identification and differentiation of K. variicola from K. pneumoniae clinical isolates.

Conclusions

This multiplex-PCR provides the means to reliably identify and genotype K. variicola. This tool could be very helpful for clinical, epidemiological, and population genetics studies of this species. A low but significant prevalence of K. variicola isolates was found, implying that misclassification had occurred previously. We believe that our multiplex-PCR assay could be of paramount importance to understand the population dynamics of K. variicola in both clinical and environmental settings.
  相似文献   

19.

Introduction

Swine dysentery caused by Brachyspira hyodysenteriae is a production limiting disease in pig farming. Currently antimicrobial therapy is the only treatment and control method available.

Objective

The aim of this study was to characterize the metabolic response of porcine colon explants to infection by B. hyodysenteriae.

Methods

Porcine colon explants exposed to B. hyodysenteriae were analyzed for histopathological, metabolic and pro-inflammatory gene expression changes.

Results

Significant epithelial necrosis, increased levels of l-citrulline and IL-1α were observed on explants infected with B. hyodysenteriae.

Conclusions

The spirochete induces necrosis in vitro likely through an inflammatory process mediated by IL-1α and NO.
  相似文献   

20.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号