首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing.

Method

Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy.

Results

Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased.

Conclusion

Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.
  相似文献   

2.

Introduction

Due to its proximity with the brain, cerebrospinal fluid (CSF) could be a medium of choice for the discovery of biomarkers of neurological and psychiatric diseases using untargeted analytical approaches.

Objectives

This study explored the CSF lipidome in order to generate a robust mass spectral database using an untargeted lipidomic approach.

Methods

Cerebrospinal fluid samples from 45 individuals were analyzed by liquid chromatography coupled to high-resolution mass spectrometry method (LC-HRMS). A dedicated data processing workflow was implemented using XCMS software and adapted filters to select reliable features. In addition, an automatic annotation using an in silico lipid database and several MS/MS experiments were performed to identify CSF lipid species.

Results

Using this complete workflow, 771 analytically relevant monoisotopic lipid species corresponding to 550 unique lipids which represent five major lipid families (i.e., free fatty acids, sphingolipids, glycerophospholipids, glycerolipids, and sterol lipids) were detected and annotated. In addition, MS/MS experiments enabled to improve the annotation of 304 lipid species. Thanks to LC-HRMS, it was possible to discriminate between isobaric and also isomeric lipid species; and interestingly, our study showed that isobaric ions represent about 50 % of the total annotated lipid species in the human CSF.

Conclusion

This work provides an extensive LC/HRMS database of the human CSF lipidome which constitutes a relevant foundation for future studies aimed at finding biomarkers of neurological disorders.
  相似文献   

3.

Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a common maternal liver disease; development can result in devastating consequences, including sudden fetal death and stillbirth. Currently, recognition of ICP only occurs following onset of clinical symptoms.

Objective

Investigate the maternal hair metabolome for predictive biomarkers of ICP.

Methods

The maternal hair metabolome (gestational age of sampling between 17 and 41 weeks) of 38 Chinese women with ICP and 46 pregnant controls was analysed using gas chromatography–mass spectrometry.

Results

Of 105 metabolites detected in hair, none were significantly associated with ICP.

Conclusion

Hair samples represent accumulative environmental exposure over time. Samples collected at the onset of ICP did not reveal any metabolic shifts, suggesting rapid development of the disease.
  相似文献   

4.

Introduction

Schizophrenia (SCH) is one of the most common psychiatric disorders, which involves impairments in motivation and cognition. The pathological mechanisms underlying SCH are still unknown, and no effective therapies can prevent or treat perfectly the cognitive impairments and deficit symptoms caused by SCH.

Objectives

We aimed to find the lipid expression change in plasma that underlie SCH onset and antipsychotics treatment.

Methods

We performed a data independent acquisition-based untargeted lipidomic approach on a quadrupole-time of flight liquid chromatography coupled to mass spectrometry platform. The plasma lipidomic profiles of SCH patients (n?=?20) pre- and post-antipsychotics treatment were acquired as well as healthy controls (n?=?29). Grouped or paired t-test were used to analyze the data.

Results

Over 1000 features were detected by our lipidomic analysis, of which 445 lipids belonging to 17 lipid species were reliably identified by tandem mass spectrometry. After statistical analysis, 47 lipids belonging to 9 lipid species were found to be dysregulated between naive SCH patients and healthy controls, and 50 lipids belonging to 9 lipid species were found to be dysregulated after antipsychotics treatment. These findings include several new SCH-relevant lipid species such as sphingomyelin, acylcarnitine and ceramide. Four types of lipid expression regulative patterns can be concluded from the above mentioned findings, revealing information about mechanism, side-effect and potential target of antipsychotics.

Conclusions

The work presented here have revealed several new lipid species which are significantly dysregulated in SCH disease development or antipsychotics treatment. These lipids provide new evidence for the pathological studies of SCH and new antipsychotics development, or can be considered as potentially candidate biomarkers for further validation.
  相似文献   

5.

Introduction

In some fish species, it is difficult to distinguish mature females from immature females or females that have already spawned via appearance or other convenient methods. Few studies have investigated plasma metabolite profiling for the prediction of fish maturation.

Objectives

We investigated the comprehensive metabolic profiles of plasma among immature females and mature females ready to spawn, as well as already spawned breeders of blunt snout bream (Megalobrama amblycephala). The purpose of this study was to screen out potential biomarkers for sexually mature female M. amblycephala compared to immature female individuals and already spawned breeders.

Methods

Three groups were set up in this study, which included 1-year-old immature females, 2-year-old sexually mature females ready to spawn and successfully spawned females of M. amblycephala. Plasma samples were collected to investigate comprehensive metabolic profiles through UPLC-MS/MS based on a metabolomics analysis method.

Results

According to multivariate and univariate statistical analysis, plasma metabolite profiles of the three groups were clearly separated. The differential plasma metabolites from three hormone related pathways including the GnRH signaling pathway, steroid hormone biosynthesis and steroid biosynthesis, were analyzed. A total of 29 metabolites were identified as differential biomarkers associated with the female maturation status.

Conclusion

The identified potential biomarkers could be useful in separating mature M. amblycephala from immature individuals or ovulation-induced female individuals, which would allow for more effective artificial breeding. The results may contribute to a better understanding of the maturation mechanisms of fish in the aspect of metabolomics.
  相似文献   

6.

Introduction

Liver cirrhosis (LC) is an advanced liver disease that can develop into hepatocellular carcinoma. Hepatitis B virus (HBV) infection is one of the main causes of LC. Therefore, there is an urgent need for developing a new method to monitor the progression of HBV-related LC (HBV-LC).

Objectives

In this study, we attempted to examine serum metabolic changes in healthy individuals as well as patients with HBV and HBV-LC. Furthermore, potential metabolite biomarkers were identified to evaluate patients progressed from health to HBV-LC.

Methods

Metabolic profiles in the serum of healthy individuals as well as patients with HBV and HBV-LC were detected using an NMR-based metabolomic approach. Univariate and multivariate analyses were conducted to analyze serum metabolic changes during HBV-LC progression. Moreover, potential metabolite biomarkers were explored by receiver operating characteristic curve analysis.

Results

Serum metabolic changes were closely associated with the progression of HBV-LC, mainly involving energy metabolism, protein metabolism, lipid metabolism and microbial metabolism. Serum histidine was identified as a potential biomarker for HBV patients. Acetate, formate, pyruvate and glutamine in the serum were identified as a potential biomarker panel for patients progressed from HBV to HBV-LC. In addition, phenylalanine, unsaturated lipid, n-acetylglycoprotein and acetone in the serum could be considered as a potential common biomarkers panel for these patients.

Conclusion

NMR-based serum metabolomic approach could be a promising tool to monitor the progression of liver disease. Different metabolites may reflect different stages of liver disease.
  相似文献   

7.

Introduction

Colorectal cancer (CRC) is a clinically heterogeneous disease, which necessitates a variety of treatments and leads to different outcomes. Only some CRC patients will benefit from neoadjuvant chemotherapy (NACT).

Objectives

An accurate prediction of response to NACT in CRC patients would greatly facilitate optimal personalized management, which could improve their long-term survival and clinical outcomes.

Methods

In this study, plasma metabolite profiling was performed to identify potential biomarker candidates that can predict response to NACT for CRC. Metabolic profiles of plasma from non-response (n?=?30) and response (n?=?27) patients to NACT were studied using UHPLC–quadruple time-of-flight)/mass spectrometry analyses and statistical analysis methods.

Results

The concentrations of nine metabolites were significantly different when comparing response to NACT. The area under the receiver operating characteristic curve value of the potential biomarkers was up to 0.83 discriminating the non-response and response group to NACT, superior to the clinical parameters (carcinoembryonic antigen and carbohydrate antigen 199).

Conclusion

These results show promise for larger studies that could result in more personalized treatment protocols for CRC patients.
  相似文献   

8.

Introduction

It is difficult to elucidate the metabolic and regulatory factors causing lipidome perturbations.

Objectives

This work simplifies this process.

Methods

A method has been developed to query an online holistic lipid metabolic network (of 7923 metabolites) to extract the pathways that connect the input list of lipids.

Results

The output enables pathway visualisation and the querying of other databases to identify potential regulators. When used to a study a plasma lipidome dataset of polycystic ovary syndrome, 14 enzymes were identified, of which 3 are linked to ELAVL1—an mRNA stabiliser.

Conclusion

This method provides a simplified approach to identifying potential regulators causing lipid-profile perturbations.
  相似文献   

9.

Introduction

Preeclampsia represents a major public health burden worldwide, but predictive and diagnostic biomarkers are lacking. Metabolomics is emerging as a valuable approach to generating novel biomarkers whilst increasing the mechanistic understanding of this complex condition.

Objectives

To summarize the published literature on the use of metabolomics as a tool to study preeclampsia.

Methods

PubMed and Web of Science were searched for articles that performed metabolomic profiling of human biosamples using either Mass-spectrometry or Nuclear Magnetic Resonance based approaches and which included preeclampsia as a primary endpoint.

Results

Twenty-eight studies investigating the metabolome of preeclampsia in a variety of biospecimens were identified. Individual metabolite and metabolite profiles were reported to have discriminatory ability to distinguish preeclamptic from normal pregnancies, both prior to and post diagnosis. Lipids and carnitines were among the most commonly reported metabolites. Further work and validation studies are required to demonstrate the utility of such metabolites as preeclampsia biomarkers.

Conclusion

Metabolomic-based biomarkers of preeclampsia have yet to be integrated into routine clinical practice. However, metabolomic profiling is becoming increasingly popular in the study of preeclampsia and is likely to be a valuable tool to better understand the pathophysiology of this disorder and to better classify its subtypes, particularly when integrated with other omic data.
  相似文献   

10.

Background

Previous metabolomic studies have revealed that plasma metabolic signatures may predict epithelial ovarian cancer (EOC) recurrence. However, few studies have performed metabolic profiling of pre- and post-operative specimens to investigate EOC prognostic biomarkers.

Objective

The aims of our study were to compare the predictive performance of pre- and post-operative specimens and to create a better model for recurrence by combining biomarkers from both metabolic signatures.

Methods

Thirty-five paired plasma samples were collected from 35 EOC patients before and after surgery. The patients were followed-up until December, 2016 to obtain recurrence information. Metabolomics using rapid resolution liquid chromatography–mass spectrometry was performed to identify metabolic signatures related to EOC recurrence. The support vector machine model was employed to predict EOC recurrence using identified biomarkers.

Results

Global metabolomic profiles distinguished recurrent from non-recurrent EOC using both pre- and post-operative plasma. Ten common significant biomarkers, hydroxyphenyllactic acid, uric acid, creatinine, lysine, 3-(3,5-diiodo-4-hydroxyphenyl) lactate, phosphohydroxypyruvic acid, carnitine, coproporphyrinogen, l-beta-aspartyl-l-glutamic acid and 24,25-hydroxyvitamin D3, were identified as predictive biomarkers for EOC recurrence. The area under the receiver operating characteristic (AUC) values in pre- and post-operative plasma were 0.815 and 0.909, respectively; the AUC value after combining the two sets reached 0.964.

Conclusion

Plasma metabolomic analysis could be used to predict EOC recurrence. While post-operative biomarkers have a predictive advantage over pre-operative biomarkers, combining pre- and post-operative biomarkers showed the best predictive performance and has great potential for predicting recurrent EOC.
  相似文献   

11.

Objectives

To characterize biomarkers that underlie osteosarcoma (OS) metastasis based on an ego-network.

Results

From the microarray data, we obtained 13,326 genes. By combining PPI data and microarray data, 10,520 shared genes were found and constructed into ego-networks. 17 significant ego-networks were identified with p < 0.05. In the pathway enrichment analysis, seven ego-networks were identified with the most significant pathway.

Conclusions

These significant ego-modules were potential biomarkers that reveal the potential mechanisms in OS metastasis, which may contribute to understanding cancer prognoses and providing new perspectives in the treatment of cancer.
  相似文献   

12.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

13.

Introduction

Allograft rejection is still an important complication after kidney transplantation. Currently, monitoring of these patients mostly relies on the measurement of serum creatinine and clinical evaluation. The gold standard for diagnosing allograft rejection, i.e. performing a renal biopsy is invasive and expensive. So far no adequate biomarkers are available for routine use.

Objectives

We aimed to develop a urine metabolite constellation that is characteristic for acute renal allograft rejection.

Methods

NMR-Spectroscopy was applied to a training cohort of transplant recipients with and without acute rejection.

Results

We obtained a metabolite constellation of four metabolites that shows promising performance to detect renal allograft rejection in the cohorts used (AUC of 0.72 and 0.74, respectively).

Conclusion

A metabolite constellation was defined with the potential for further development of an in-vitro diagnostic test that can support physicians in their clinical assessment of a kidney transplant patient.
  相似文献   

14.

Objective

To find new biomarkers for early diagnosis of breast cancer.

Results

847 lipid species were identified from 78 plasma samples (37 breast cancer samples and 41 healthy controls) by ultra HPLC coupled with quadrupole time-of-flight tandem mass spectrometry. These include 321 glycerophospholipids (GPs), 265 glycerolipids (GLs), 91 sphingolipids (SPs), 77 fatty acyls (FAs), 68 sterol lipids (STs), 18 prenol lipids (PRs), 6 polyketides (PKs), and 1 saccharolipid (SL). Separation was observed from an orthogonal signal correction Partial Least Square Discrimination Analysis model. Based on this analysis, six differentiating lipids were identified: PC (20:2/20:5), PC (22:0/24:1), TG (12:0/14:1), and DG (18:1/18:2) had high levels, whereas PE (15:0/19:1) and N-palmitoyl proline had low levels in the breast cancer samples compared with the healthy controls. Furthermore, significant differences in metabolites were found among some clinical characteristics.

Conclusions

Our results reveal that six specific lipids could serve as potential biomarkers for early diagnosis of breast cancer.
  相似文献   

15.

Introduction

Human plasma metabolomics offer powerful tools for understanding disease mechanisms and identifying clinical biomarkers for diagnosis, efficacy prediction and patient stratification. Although storage conditions can affect the reliability of data from metabolites, strict control of these conditions remains challenging, particularly when clinical samples are included from multiple centers. Therefore, it is necessary to consider stability profiles of each analyte.

Objectives

The purpose of this study was to extract unstable metabolites from vast metabolome data and identify factors that cause instability.

Method

Plasma samples were obtained from five healthy volunteers, were stored under ten different conditions of time and temperature and were quantified using leading-edge metabolomics. Instability was evaluated by comparing quantitation values under each storage condition with those obtained after ?80 °C storage.

Result

Stability profiling of the 992 metabolites showed time- and temperature-dependent increases in numbers of significantly changed metabolites. This large volume of data enabled comparisons of unstable metabolites with their related molecules and allowed identification of causative factors, including compound-specific enzymatic activity in plasma and chemical reactivity. Furthermore, these analyses indicated extreme instability of 1-docosahexaenoylglycerol, 1-arachidonoylglycerophosphate, cystine, cysteine and N6-methyladenosine.

Conclusion

A large volume of data regarding storage stability was obtained. These data are a contribution to the discovery of biomarker candidates without misselection based on unreliable values and to the establishment of suitable handling procedures for targeted biomarker quantification.
  相似文献   

16.

Introduction

Cellular metabolism is altered during cancer initiation and progression, which allows cancer cells to increase anabolic synthesis, avoid apoptosis and adapt to low nutrient and oxygen availability. The metabolic nature of cancer enables patient cancer status to be monitored by metabolomics and lipidomics. Additionally, monitoring metabolic status of patients or biological models can be used to greater understand the action of anticancer therapeutics.

Objectives

Discuss how metabolomics and lipidomics can be used to (i) identify metabolic biomarkers of cancer and (ii) understand the mechanism-of-action of anticancer therapies. Discuss considerations that can maximize the clinical value of metabolic cancer biomarkers including case–control, prognostic and longitudinal study designs.

Methods

A literature search of the current relevant primary research was performed.

Results

Metabolomics and lipidomics can identify metabolic signatures that associate with cancer diagnosis, prognosis and disease progression. Discriminatory metabolites were most commonly linked to lipid or energy metabolism. Case–control studies outnumbered prognostic and longitudinal approaches. Prognostic studies were able to correlate metabolic features with future cancer risk, whereas longitudinal studies were most effective for studying cancer progression. Metabolomics and lipidomics can help to understand the mechanism-of-action of anticancer therapeutics and mechanisms of drug resistance.

Conclusion

Metabolomics and lipidomics can be used to identify biomarkers associated with cancer and to better understand anticancer therapies.
  相似文献   

17.

Introduction

Infiltrating gliomas are primary brain tumors that express significant biological and clinical heterogeneity in adults, which complicates their treatment and prognosis. Characterization of tumor subtypes using spectroscopic analysis may assist in predicting malignant transformation and quantification of response to therapy.

Study objective

To implement an automated algorithm for classification of metabolomic profiles for the classification of glioma pathological grades and the prediction of malignant progression using spectra obtained by high-resolution magic angle spinning (HR-MAS) spectroscopy of patient-derived tissue samples.

Methods

237 image-guided tissue samples were obtained from 152 patients who underwent surgery for newly diagnosed or recurrent glioma and analyzed via HR-MAS spectroscopy. Orthogonal projection to latent structures discriminant analysis was used as a classifier and the variable-influence-on-projection values were evaluated to identify signature spectral regions.

Results

The accuracy of classifiers developed for discriminating glioma subtypes was 68% for newly diagnosed grade II versus III samples; 86 and 92% for new and recurrent grade III versus IV, respectively; 95% for newly diagnosed grade II versus IV; and 88% for recurrent grade II versus IV lesions. Classifiers distinguished between samples from newly diagnosed vs. recurrent lesions with an accuracy of 78% for grade III and 99% for grade IV glioma.

Conclusion

Classifying metabolomic profiles for new and recurrent glioma without prior assumptions regarding spectral components identified candidate in vivo biomarkers for use in assessing changes that are likely to impact treatment decisions.
  相似文献   

18.

Introduction

Non-traumatic osteonecrosis of the femoral head (NTONFH) is a progressive disease, always leading to hip dysfunction if no early intervention was applied. The difficulty for early diagnosis of NTONFH is due to the slight symptoms at early stages as well as the high cost for screening patients by using magnetic resonance imaging.

Objective

The aim was to detect biomarkers of early-stage NTONFH, which was beneficial to the exploration of a cost-effective approach for the early diagnose of the disease.

Methods

Metabolomic approaches were employed in this study to detect biomarkers of early-stage NTONFH (22 patients, 23 controls), based on the platform of ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and the uses of multivariate statistic analysis, putative metabolite identification, metabolic pathway analysis and biomarker analysis.

Results

In total, 33 serum metabolites were found altered between NTONFH group and control group. In addition, glycerophospholipid metabolism and pyruvate metabolism were highly associated with the disease.

Conclusion

The combination of LysoPC (18:3), l-tyrosine and l-leucine proved to have a high diagnostic value for early-stage NTONFH. Our findings may contribute to the protocol for early diagnosis of NTONFH and further elucidate the underlying mechanisms of the disease.
  相似文献   

19.

Introduction

The absolute quantitation of lipids at the lipidome-wide scale is a challenge but plays an important role in the comprehensive study of lipid metabolism.

Objectives

We aim to develop a high-throughput quantitative lipidomics approach to enable the simultaneous identification and absolute quantification of hundreds of lipids in a single experiment. Then, we will systematically characterize lipidome-wide changes in the aging mouse brain and provide a link between aging and disordered lipid homeostasis.

Methods

We created an in-house lipid spectral library, containing 76,361 lipids and 181,300 MS/MS spectra in total, to support accurate lipid identification. Then, we developed a response factor-based approach for the large-scale absolute quantifications of lipids.

Results

Using the lipidomics approach, we absolutely quantified 1212 and 864 lipids in human cells and mouse brains, respectively. The quantification accuracy was validated using the traditional approach with a median relative error of 12.6%. We further characterized the lipidome-wide changes in aging mouse brains, and dramatic changes were observed in both glycerophospholipids and sphingolipids. Sphingolipids with longer acyl chains tend to accumulate in aging brains. Membrane-esterified fatty acids demonstrated diverse changes with aging, while most polyunsaturated fatty acids consistently decreased.

Conclusion

We developed a high-throughput quantitative lipidomics approach and systematically characterized the lipidome-wide changes in aging mouse brains. The results proved a link between aging and disordered lipid homeostasis.
  相似文献   

20.

Introduction

Endometriosis is an estrogen-dependent gynecological disease that causes infertility, and potential metabolomic biomarkers related to ovarian endometriosis and poor outcomes after assisted reproductive treatments are still lacking.

Objectives

The present study analyzed the metabolomic profiling of follicular fluid samples from 40 patients undergoing in vitro fertilization.

Methods

The follicular fluid samples were classified as controls (n = 22) and endometriosis patients (n = 18). The samples were submitted to Bligh and Dyer protocol followed by metabolomics analysis by ultra-performance liquid chromatography mass spectrometry. Clinical data was assessed by Students’ T-test and metabolomics data was analyzed by multivariate statistics by MetaboAnalyst 3.0 to obtain intrinsic characteristics that allowed for groups discrimination. The Receiver Operating Characteristic curve was carried out for the proposed biomarkers, aiming to determine their specificity and sensitivity, as a set and individually.

Results

From the metabolomic analysis, 20 ion masses were selected as potential biomarkers from principal component analysis, which showed that all biomarkers were more abundant in the endometriosis group when compared to controls. Tentative attribution was performed by lipid maps database, demonstrating that these potential biomarkers correspond to fatty acids, carnitines, monoacylglycerols, lysophosphatidic acids, lysophosphatidylglycerols, diacylglycerols, lysophosphatidylcholines, phosphatidylserine, lysophosphatidylinositols and Phosphatidic Acid.

Conclusion

The use of mass spectrometry-based metabolomics allowed for the identification of effective biomarkers for ovarian endometriosis, which may contribute for a better comprehension of the disease and how it affects the ovary, as well as assisting in the development of accessory tools for endometriosis diagnosis and infertility management.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号