首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the arrival of effective symptomatic treatments and the promise of drugs that may delay progression, we now need to identify Alzheimer’s disease (AD) at an early stage of the disease. To diagnose AD earlier and more accurately, attention has been directed toward peripheral biochemical markers. This article reviews promising potential cerebrospinal fluid (CSF) biomarkers for AD focussing on their role in clinical diagnosis. In particular, two biochemical markers, CSF total tau (t-tau) protein and the 42 amino acid form of β-amyloid (Aβ42), perform satisfactorily enough to achieve a role in the clinical diagnostic settings of patients with dementia together with the cumulative information from basic clinical work-up, genetic screening, and brain imaging. These CSF markers are particularly useful to discriminate early or incipient AD from age-associated memory impairment, depression, and some secondary dementias. In order to discriminate AD from other primary dementia disorders, however, more accurate and specific markers are needed. Preliminary evidence strongly suggests that quantification of tau phosphorylated at specific sites in CSF improves early detection, differential diagnosis, and tracking of disease progression in AD.  相似文献   

2.
Objective: In this study, we aimed to search for noninvasive predictive biomarkers for prenatal diagnosis of Down’s syndrome (DS). Methods: Maternal serum samples from five DS-affected pregnant women and five DS-unaffected women were analyzed by 2D gel electrophoresis and MALDI-TOF mass spectrometry to screen for potential predictive biomarkers of DS. Then, differential levels of dGTPase, β2-glycoprotein I (β2-GPI), complement factor H-related protein 1 precursor (CFHR1) and kininogen 1 isoform 2 were further verified by western blotting tests in another independent group. Results: Statistical analysis results revealed 29 protein spots whose levels differed significantly in the DS-affected pregnancies group. Of these, the eight most differentially expressed in DP were identified successfully. Among these, levels of dGTPase, CFHR1 and kininogen 1 were elevated significantly, whereas β2-GPI was reduced in DP. Discussion: These preliminarily verified proteins might serve as potential predictive biomarkers for DS-affected pregnancies.  相似文献   

3.
The serum copper and zinc levels were determined by atomic absorption spectrometry in 135 Hodgkin's disease (HD) patients and in 100 healthy controls. These values were used to explore the application value of the serum copper/zinc ratio in the histologic classification and prognosis in this illness. The resuls show that serum copper and the copper/zinc ratio were higher and the serum zinc level was lower in the HD patients when compared to the healthy individuals (p < 0.01, 0.001, and 0.01, respectively). The serum copper and copper/zinc ratio were significantly higher in the lymphocyte-depleted type of HD than in the patients with the mixed-cellular type of HD. These values were also higher and the serum zinc was lower in the patients with mixed-cellular HD when compared to the nodular-sclerosis and the lymphocyte-predominant types of the disease (p < 0.01 and 0.001, respectively). It was also shown that as the disease progresses, the serum copper level and copper/zinc ratio rises with the concomitant decrease of the corresponding serum zinc level. These trends are reversed in cases where the disease is in remission. Both the serum copper level and the copper/zinc ratio were strongly correlated to histopathological changes, clinical stage, and prognosis of Hodgkin's disease.  相似文献   

4.
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.  相似文献   

5.
[11C]Dimebon (2-[11C]methyl-8-methyl-5-(2-(6-methylpyridin-3-yl)ethyl)-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole), a new potential PET agent for imaging of Alzheimer’s disease and Huntington’s disease, was prepared by N-[11C]methylation of desmethyl-Domebon precursor with [11C]CH3OTf and purified with a semi-preparative HPLC method in 30–40% decay corrected radiochemical yield and 222–296 GBq/μmol specific activity at EOB. The measured lipophilicity coefficient (Log P) value of [11C]Dimebon was 2.53.  相似文献   

6.
Multitarget molecular hybrids of N-benzyl pyrrolidine derivatives were designed, synthesized, and biologically evaluated for the treatment of Alzheimer’s disease (AD). Among the synthesized compounds, 4k and 4o showed balanced enzyme inhibitions against cholinesterases (AChE and BChE) and BACE-1. Both leads showed considerable PAS-AChE binding capability, excellent brain permeation, potential disassembly of Aβ aggregates, and neuroprotective activity against Aβ-induced stress. Compounds 4k and 4o also ameliorated cognitive dysfunction against the scopolamine-induced amnesia model in the Y-maze test. The ex vivo study signified attenuated brain AChE activity and antioxidant potential of compounds 4k and 4o. Furthermore, compound 4o also showed improvement in Aβ-induced cognitive dysfunction by the Morris water maze test with excellent oral absorption characteristics ascertained by the pharmacokinetic study. In silico molecular docking and dynamics simulation studies of leads suggested their consensual binding affinity toward PAS-AChE in addition to aspartate dyad of BACE-1.  相似文献   

7.
IntroductionThe aim of this study was to clarify the effectiveness of various imaging modalities and characteristic imaging features in the screening of IgG4-related dacryoadenitis and sialadenitis (IgG4-DS), and to show the differences in the imaging features between IgG4-DS and Sjögren’s syndrome (SS).MethodsThirty-nine patients with IgG4-DS, 51 with SS and 36 with normal salivary glands were enrolled. Images of the parotid and submandibular glands obtained using sonography, 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG-PET/CT), computed tomography (CT) and magnetic resonance imaging (MRI) were retrospectively analyzed. Six oral and maxillofacial radiologists randomly reviewed the arranged image sets under blinded conditions. Each observer scored the confidence rating regarding the presence of the characteristic imaging findings using a 5-grade rating system. After scoring various findings, diagnosis was made as normal, IgG4-DS or SS, considering all findings for each case.ResultsOn sonography, multiple hypoechoic areas and hyperechoic lines and/or spots in the parotid glands and obscuration of submandibular gland configuration were detected mainly in patients with SS (median scores 4, 4 and 3, respectively). Reticular and nodal patterns were observed primarily in patients with IgG4-DS (median score 5). FDG-PET/CT revealed a tendency for abnormal 18F-FDG accumulation and swelling of both the parotid and submandibular glands in patients with IgG4-DS, particularly in the submandibular glands. On MRI, SS had a high score regarding the findings of a salt-and-pepper appearance and/or multiple cystic areas in the parotid glands (median score 4.5). Sonography showed the highest values among the four imaging modalities for sensitivity, specificity and accuracy. There were significant differences between sonography and CT (p = 0.0001) and between sonography and FDG-PET/CT (p = 0.0058) concerning accuracy.ConclusionsChanges in the submandibular glands affected by IgG4-DS could be easily detected using sonography (characteristic bilateral nodal/reticular change) and FDG-PET/CT (abnormal 18F-FDG accumulation). Even inexperienced observers could detect these findings. In addition, sonography could also differentiate SS. Consequently, we recommend sonography as a modality for the screening of IgG4-DS, because it is easy to use, involves no radiation exposure and is an effective imaging modality.  相似文献   

8.

Introduction

Biomarkers are needed in inflammatory bowel disease (IBD) to help define disease activity and identify underlying pathogenic mechanisms. We hypothesized that serum metabolomics, which produces unique metabolite profiles, can aid in this search.

Objectives

The aim of this study was to characterize serum metabolomic profiles in patients with IBD, and to assess for differences between patients with ulcerative colitis (UC), Crohn’s disease (CD), and non-IBD subjects.

Methods

Serum samples from 20 UC, 20 CD, and 20 non-IBD control subjects were obtained along with patient characteristics, including medication use and clinical disease activity. Non-targeted metabolomic profiling was performed using ultra-high performance liquid chromatography/mass spectrometry (UPLC-MS/MS) optimized for basic or acidic species and hydrophilic interaction liquid chromatography (HILIC/UPLC-MS/MS).

Results

In total, 671 metabolites were identified. Comparing IBD and control subjects revealed 173 significantly altered metabolites (27 increased and 146 decreased). The majority of the alterations occurred in lipid-, amino acid-, and energy-related metabolites. Comparing only CD and control subjects revealed 286 significantly altered metabolites (54 increased and 232 decreased), whereas comparing UC and control subjects revealed only five significantly altered metabolites (all decreased). Hierarchal clustering using significant metabolites separated CD from UC and control subjects.

Conclusions

We demonstrate that a number of lipid-, amino acid-, and tricarboxylic acid cycle-related metabolites were significantly altered in IBD patients, more specifically in CD. Therefore, alterations in lipid and amino acid metabolism and energy homeostasis may play a key role in the pathogenesis of CD.
  相似文献   

9.
Soluble oligomers and/or aggregates of Amyloid-β (Aβ) are viewed by many as the principal cause for neurodegeneration in Alzheimer’s disease (AD). However, the mechanism by which Aβ and its aggregates cause neurodegeneration is not clear. The toxicity of Aβ has been attributed to its hydrophobicity. However, many specific mitochondrial cytopathologies e.g., loss of complex IV, loss of iron homeostasis, or oxidative damage cannot be explained by Aβ’s hydrophobicity. In order to understand the role of Aβ in these cytopathologies we hypothesized that Aβ impairs specific metabolic pathways. We focused on heme metabolism because it links iron, mitochondria, and Aβ. We generated experimental evidence showing that Aβ alters heme metabolism in neuronal cells. Furthermore, we demonstrated that Aβ binds to and depletes intracellular regulatory heme (forming an Aβ-heme complex), which provides a strong molecular connection between Aβ and heme metabolism. We showed that heme depletion leads to key cytopathologies identical to those seen in AD including loss of iron homeostasis and loss of mitochondrial complex IV. Aβ-heme exhibits a peroxidase-like catalytic activity, which catalytically accelerates oxidative damage. Interestingly, the amino acids sequence of rodent Aβ (roAβ) and human Aβ (huAβ) is identical except for three amino acids within the hydrophilic region, which is also the heme-binding motif that we identified. We found that huAβ, unlike roAβ, binds heme tightly and forms a peroxidase. Although, roAβ and huAβ equally form fibrils and aggregates, rodents do not develop AD-like neuropathology. These findings led us to propose a new mechanism for mitochondrial dysfunction and huAβ’s neurotoxicity. This mechanism prompted the development of methylene blue (MB), which increased heme synthesis, complex IV, and mitochondrial function. Thus, MB may delay the onset and progression of AD and serve as a lead to develop novel drugs to treat AD.  相似文献   

10.
Crohn's disease (CD) is a chronic inflammatory bowel disease that can affect any part of the gastrointestinal tract. The etiology of CD is unknown; however, genetic, epigenetic, environmental, and lifestyle factors could play an essential role in the onset and establishment of the disease. CD results from immune dysregulation due to loss of the healthy symbiotic relationship between host and intestinal flora and or its antigens. It affects both sexes equally with a male to female ratio of 1.0, and its onset can occur at any age, but the diagnosis is most commonly observed in the range of 20 to 40 years of age. CD diminishes quality of life, interferes with social activities, traumatizes due to the stigma of incontinence, fistulae, strictures, and colostomies, and in severe cases, affects survival when compared to the general population. Symptoms fluctuate between periods of remission and activity in which complications such as fistulas, strictures, and the need for bowel resection, surgery, and colostomy implantation make up the most severe aspects of the disease. CD can be progressive and the complications recurrent despite treatment with anti-inflammatory drugs, corticosteroids, immunosuppressants, and biological agents. However, over time many patients become refractory without treatment alternatives, and in this scenario, hematopoietic stem cell transplantation (HSCT) has emerged as a potential treatment option. The rationale for the use of HSCT for CD is anchored in animal studies and human clinical trials where HSCT could reset a patient's immune system by eliminating disease-causing effector cells and upon immune recovery increase regulatory and suppressive immune cells. Autologous HSCT using a non-myeloablative regimen of cyclophosphamide and anti-thymocyte globulin without CD34+ selection has been to date the most common transplant conditioning regimen adopted. In this review we will address the current situation regarding CD treatment with HSCT and emphasize the medical, ethical, and legal aspects that permeate the procedure in Brazil.  相似文献   

11.
A series of novel 2-methoxy-phenyl dimethyl-carbamate derivatives were designed, synthesized and evaluated as site-activated MTDLs based on rivastigmine and curcumin. Most of them exhibited good to excellent AChE and BuChE inhibitory activities with sub-micromolar IC50 values. Among all the compounds, 6a demonstrated the most potent AChE inhibition with IC50 value of 0.097 μM, which is about 20-fold than that of rivastigmine. In addition, the three selected compounds 5a, 6a and 6e demonstrated inhibitory activity against Aβ self-aggregation similar to cucurmin in TEM assay, which is obviously different from the weak activity of rivastigmine. Moreover, the hydrolysate of 6a (compound 7) also showed potent ABTS+ scavenging and moderate copper ion chelating activity in vitro.  相似文献   

12.
With the recent research advances in molecular biology and technology, multiple credible hypotheses about the progress of Alzheimer’s disease (AD) have been proposed; multi-target drugs have emerged as an innovative therapeutic approach for AD. Current clinical therapy for AD patients is mainly palliative treatment targeting acetylcholinesterase (AChE). Inhibition of phosphodiesterase 5A (PDE5A) has recently been validated as a potentially novel therapeutic approach for Alzheimer’s disease (AD). In this work, series of new compounds were designed, synthesized and evaluated as dual cholinesterase and PDE5A inhibitor. Biological results revealed that some of these compounds display good biological activities against AChE with IC50 values about 44.67–169.80 nM (donepezil IC50 50.12 nM). Notably, compound 12 presented potent activities against PDE5A with IC50 values about 50 μM (sildenafil IC50 12.59 μM), and some of these compounds showed low cell toxicity to A549 cells in vitro.  相似文献   

13.
14.
A series of 4′-OH-flurbiprofen-chalcone hybrids were designed, synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer’s disease. The biological screening results indicated that most of these hybrids exhibited good multifunctional activities. Among them, compounds 7k and 7m demonstrated the best inhibitory effects on self-induced Aβ1–42 aggregation (60.0% and 78.2%, respectively) and Cu2+-induced Aβ1–42 aggregation (52.4% and 95.0%, respectively). Moreover, these two representative compounds also exhibited good antioxidant activities, MAO inhibitions, biometal chelating abilities and anti-neuroinflammatory activities in vitro. Furthermore, compound 7m displayed appropriate blood-brain barrier permeability. These multifunctional properties highlight compound 7k and 7m as promising candidates for further development of multi-functional drugs against AD.  相似文献   

15.
16.
In the designed research work, a series of 2-furoyl piperazine based sulfonamide derivatives were synthesized as therapeutic agents to target the Alzheimer’s disease. The structures of the newly synthesized compounds were characterized through spectral analysis and their inhibitory potential was evaluated against butyrylcholinesterase (BChE). The cytotoxicity of these sulfonamides was also ascertained through hemolysis of bovine red blood cells. Furthermore, compounds were inspected by Lipinki Rule and their binding profiles against BChE were discerned by molecular docking. The protein fluctuations in docking complexes were recognized by dynamic simulation. From our in vitro and in silico results 5c, 5j and 5k were identified as promising lead compounds for the treatment of targeted disease.  相似文献   

17.
The aerial part of Geophila repens (L.) I.M. Johnst (Rubiaceae) has been used in India to improve intelligence and memory for a long time. As part of our ongoing efforts in discovering potential bioactive compounds from G. repens, we have studied the isolation, identification, and quantification of a new class of cholinesterase inhibitor from G. repens for Alzheimer’s disease (AD). Terpene was isolated from hydroalcohol extract of G. repens (GRHA) and its structure was identified “Pentylcurcumene” by spectroscopic data. HPTLC fingerprint analysis was performed and good separation was achieved in mobile phase (benzene:methanol; 7.5:2.5, v/v, 254 and 366 nm; Rf 0.51). The method was validated using ICH guidelines in terms of linearity, specificity, sensitivity, accuracy, precision, robustness and stability. In cellular antioxidant studies e.g. DPPH, oxygen-radical-absorbance-capacity (ORAC) and cell-based-antioxidant-protection-in-erythrocytes (CAP-e) assays showed that, Pentylcurcumene showed remarkably different degrees of antioxidant activities in dose-dependent manner. Pentylcurcumene demonstrated anticholinesterase activities e.g. IC50 of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition were 73.12 ± 0.56 and 97.65 ± 0.46 μg/ml, respectively. To better understand enzyme kinetics, Lineweaver-Burk plot of Pentylcurcumene displayed the highest affinity with competitive inhibition (reversible) towards both AChE (Vmax 0.8) and BChE (Vmax 0.6). An improved and advanced HPTLC tool of bioautography detection of Pentylcurcumene has been successfully demonstrated its anticholinesterase activities. Molecular docking simulations of Pentylcurcumene (ligand) and enzymes (proteins) exhibited the binding of ligand at active sites of AChE (human/rat) and BChE (human/homology) efficiently and also predicted the hydrophobic interaction of drug towards different amino acid residue within proteins. As per the results of antioxidant study and with the support of molecular docking analysis, it is concluded that Pentylcurcumene could be a potential first-line cholinesterase-inhibitor for AD.  相似文献   

18.
Abstract

The most common brain disorder of late life is Alzheimer’s disease (AD), which is highly complicating dementia. There are several drug targets which are reported to control the severe level of AD; notably, acetylcholinesterase, β-Secretase and glycogen synthase kinase enzymes are approached as a good drug targets for AD. Hence, the present study mainly focused to discover newly synthesized molecule (7-propyl-6H-pyrano[3,2-c:5,6-c']dichromene-6,8(7H)-dione) as a potential triplet acting drug for above said enzymes through the analysis of X-ray crystallography, molecular docking, molecular dynamics and quantum chemical calculation. The target drug molecule was crystallized in the monoclinic crystal structure with P21/n space group. The structure was solved by SHELXS and refined by SHELXL. The crystal packing is stabilized by C???H···O type of interactions. Further, the induced fit docking shows that the molecule has high docking score, glide energy, favorable hydrogen bonding and hydrophobic interactions on the protein targets. The molecular dynamics simulation was performed to understand the stability of the molecule in the presence of active site environment. Finally, quantum chemical calculation has been carried out for the molecule in gas phase and for the corresponding molecule lifted from the active site region. The structural comparison between gas phase and active site helps to understand the conformational modification of the molecule in the active site.

Communicated by Ramaswamy H. Sarma  相似文献   

19.
A series of compounds following the lead compounds including deferasirox and tacrine were designed, synthesized and evaluated as multifunctional agents against Alzheimer’s disease (AD). In vitro studies showed that most synthesized compounds exhibited good multifunctional activities in inhibiting acetylcholinesterase (bAChE), and chelating metal ions. Especially, compound TDe demonstrated significant metal chelating property, a moderate acetylcholinesterase (AChE) inhibitory activity and an antioxidant activity. Results from the molecular modeling indicated that TD compounds were mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of TcAChE. Moreover, TDe showed a low cytotoxicity but a good protective activity against the injury caused by H2O2. These results suggest that TD compounds might be considered as attractive multi-target cholinesterase inhibitor and will play important roles in the treatment of AD.  相似文献   

20.
Phosphodiesterase-9 (PDE9) is a promising target for the treatment of Alzheimer’s disease (AD). To discover efficient PDE9 inhibitors with good metabolic stability and solubility, a series of novel pyrazolopyrimidinone derivatives have been designed with the assistance of molecular docking and dynamics simulations. All the fourteen synthesized compounds gave excellent inhibition ratio against PDE9 at 10 nM. Compound 1k with the IC50 of 2.0 nM against PDE9, showed good metabolic stability (t1/2 of 57 min) in the RLM as well as good solubility (195 mg/L). The analysis on binding modes of targeted compounds may provide insight for further structural modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号