首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Introduction

Light is the primary stimulus for vision, but may also cause damage to the retina. Pre-exposing the retina to sub-lethal amount of light (or preconditioning) improves chances for retinal cells to survive acute damaging light stress.

Objectives

This study aims at exploring the changes in retinal metabolome after mild light stress and identifying mechanisms that may be involved in preconditioning.

Methods

Retinas from 12 rats exposed to mild light stress (1000 lux?×?for 12 h) and 12 controls were collected one and seven days after light stress (LS). One retina was used for targeted metabolomics analysis using the Biocrates p180 kit while the fellow retina was used for histological and immunohistochemistry analysis.

Results

Immunohistochemistry confirmed that in this experiment, a mild LS with retinal immune response and minimal photoreceptor loss occurred. Compared to controls, LS induced an increased concentration in phosphatidylcholines. The concentration in some amino acids and biogenic amines, particularly those related to the nitric oxide pathway (like asymmetric dimethylarginine (ADMA), arginine and citrulline) also increased 1 day after LS. 7 days after LS, the concentration in two sphingomyelins and phenylethylamine was found to be higher. We further found that in controls, retina metabolome was different between males and females: male retinas had an increased concentration in tyrosine, acetyl-ornithine, phosphatidylcholines and (acyl)-carnitines.

Conclusions

Besides retinal sexual metabolic dimorphism, this study shows that preconditioning is mostly associated with re-organisation of lipid metabolism and changes in amino acid composition, likely reflecting the involvement of arginine-dependent NO signalling.
  相似文献   

2.
3.
Diazinon insecticide is widely applied throughout rice (Oryza sativa L.) fields in Iran. However, concerns are now being raised about its potential adverse impacts on rice fields. In this study, a time-course metabolic change in rice plants was investigated after diazinon treatment using gas chromatography–mass spectrometry (GC–MS), and subsequently the statistical strategy of random forest (RF) was performed in order to find the stress-associated effects. According to the results, a wide range of metabolites were dynamically varied as a result of the plant response to diazinon such as biosynthesis and metabolism of sugars, amino acids, organic acids, and phenylpropanoids, all correlating with the exposure time. Plant response was involved in multiple metabolic pathways, most of which were correlated with the exposure time. In this study, RF was explored as a potential multivariate method for GC–MS analysis of metabolomics data of rice (O. sativa L.) plants under diazinon stress; more than 31 metabolites were quantitatively determined, and time-course metabolic response of the plant during different days after treatment was measured. Results demonstrated RF as a potential multivariate method for GC–MS analysis of changes in plant metabolome under insecticide stress.  相似文献   

4.
? Variations in tissue development and spatial composition have a major impact on the nutritional and organoleptic qualities of ripe fleshy fruit, including melon (Cucumis melo). To gain a deeper insight into the mechanisms involved in these changes, we identified key metabolites for rational food quality design. ? The metabolome, volatiles and mineral elements were profiled employing an unprecedented range of complementary analytical technologies. Fruits were followed at a number of time points during the final ripening process and tissues were collected across the fruit flesh from rind to seed cavity. Approximately 2000 metabolite signatures and 15 mineral elements were determined in an assessment of temporal and spatial melon fruit development. ? This study design enabled the identification of: coregulated hubs (including aspartic acid, 2-isopropylmalic acid, β-carotene, phytoene and dihydropseudoionone) in metabolic association networks; global patterns of coordinated compositional changes; and links of primary and secondary metabolism to key mineral and volatile fruit complements. ? The results reveal the extent of metabolic interactions relevant to ripe fruit quality and thus have enabled the identification of essential candidate metabolites for the high-throughput screening of melon breeding populations for targeted breeding programmes aimed at nutrition and flavour improvement.  相似文献   

5.
Molecular changes elicited by plants in response to fungal attack and how this affects plant–pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label‐free proteomics and NMR‐based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis‐related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea–Foc interactions.  相似文献   

6.
Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state 2H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific 2H labels have been introduced into the methyl groups of retinal and solid-state 2H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent 2H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the β-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the β4 strand of the E2 loop and the side chains of Glu122 and Trp265 within the binding pocket. The solid-state 2H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.  相似文献   

7.
Analysis of the metabolic network of lysine-producing Corynebacterium glutamicum showed that lysine yields are limited by the excess energy production in lysine biosynthesis. The most probable maximum yield is 0.47 mol/mol on glucose, when phosphoenolpyruvate carboxylase functions in an anaplerotic rection. When this function is fulfilled by the glyoxylate pathway, a maximum yield of 0.38 mol/mol is obtained.  相似文献   

8.
9.
Ephedrine and pseudoephedrine are phenylpropylamino alkaloids widely used in modern medicine. Some Ephedra species such as E. sinica Stapf (Ephedraceae), a widely used Chinese medicinal plant (Chinese name: Ma Huang), accumulate ephedrine alkaloids as active constituents. Other Ephedra species, such as E. foeminea Forssk. (syn. E. campylopoda C.A. Mey) lack ephedrine alkaloids and their postulated metabolic precursors 1-phenylpropane-1,2-dione and (S)-cathinone. Solid-phase microextraction analysis of freshly picked young E. sinica and E. foeminea stems revealed the presence of increased benzaldehyde levels in E. foeminea, whereas 1-phenylpropane-1,2-dione was detected only in E. sinica. Soluble protein preparations from E. sinica and E. foeminea stems catalyzed the conversion of benzaldehyde and pyruvate to (R)-phenylacetylcarbinol, (S)-phenylacetylcarbinol, (R)-2-hydroxypropiophenone (S)-2-hydroxypropiophenone and 1-phenylpropane-1,2-dione. The activity, termed benzaldehyde carboxyligase (BCL) required the presence of magnesium and thiamine pyrophosphate and was 40 times higher in E. sinica as compared to E. foeminea. The distribution patterns of BCL activity in E. sinica tissues correlates well with the distribution pattern of the ephedrine alkaloids. (S)-Cathinone reductase enzymatic activities generating (1R,2S)-norephedrine and (1S,1R)-norephedrine were significantly higher in E. sinica relative to the levels displayed by E. foeminea. Surprisingly, (1R,2S)-norephedrine N-methyltransferase activity which is a downstream enzyme in ephedrine biosynthesis was significantly higher in E. foeminea than in E. sinica. Our studies further support that benzaldehyde is the metabolic precursor to phenylpropylamino alkaloids in E. sinica.  相似文献   

10.
The Smad genes are the intracellular mediators of TGF-beta signals. Targeted mutagenesis in mice has yielded valuable new insights into the functions of this important gene family. These experiments have shown that Smad2 and Smad4 are needed for gastrulation, Smad5 for angiogenesis, and Smad3 for establishment of the mucosal immune response and proper development of the skeleton. In addition, these experiments have shown us the importance of gene dosage in this family, as several of its members yielded haploinsufficiency phenotypes. These include gastrulation and craniofacial defects for Smad2, accelerated wound healing for Smad3, and the incidence of gastric cancer for Smad4. Combinatorial genetics has also revealed functions of Smads in left/right isomerism and liver development.  相似文献   

11.
12.

Background  

As phenotypic features derived from heritable characters, the topologies of metabolic pathways contain both phylogenetic and phenetic components. In the post-genomic era, it is possible to measure the "phylophenetic" contents of different pathways topologies from a global perspective.  相似文献   

13.
Abstract. Proacrosin appears in the Golgi complex as early as the mid-pachytene stage and immediately thereafter initiates partition to be equally distributed in sper-matids. The anti-proacrosin monoclonal antibody 4D4 (mAb 4D4) was used as a marker of these cytoplasmic events in ten men exhibiting spermatogenesis arrest in three specific stages: (i) leptotene/zygotene spermatocyte I with impaired chromosome pairing (six cases), (ii) early pachytene I (one case) and (iii) metaphase/anaphase I (three cases). Prophase arrest stages were identified on testis sections stained by silver nitrate. MAb 4D4 labelling revealed two types of leptotene/zygotene arrest depending on whether proacrosin was expressed or not. The data obtained enabled us to distinguish between: (i) nuclear blockages due to chromosome and/or nuclear matrix anomalies, when cytoplasmic events were either inhibited or not inhibited, and (ii) nuclear anomalies due to microtubular disturbances. In this latter case, cytokinesis was impaired as early as the prophase I, thus indicating a relationship between the Golgi partitioning and the microtubule network. Data show that meiotic arrest investigations, by means of an appropriate marker of the cytoplasmic events, provide valuable information on spermatogenic developmental processes.  相似文献   

14.

Introduction

Molecular factors are differentially observed in various bent sectors of poplar (Populus nigra) woody taproots. Responses to stress are modulated by a complex interplay among different hormones and signal transduction pathways. In recent years, metabolomics has been recognized as a powerful tool to characterize metabolic network regulation, and it has been widely applied to investigate plant responses to biotic and abiotic stresses.

Objectives

In this paper we used metabolomics to understand if long term-bending stress induces a “spatial” and a “temporal” metabolic reprogramming in woody poplar roots.

Methods

By NMR spectroscopy and statistical analysis we investigated the unstressed and three portions of stressed root (above-bent, bent, and below-bent) sectors collected at 12 (T0), 13 (T1) and 14 (T2) months after stress induction.

Results

The data indicate a clear between-class separation of control and stressed regions, based on the metabolites regulation, during both spatial and temporal changes. We found that taproots, as a consequence of the stress, try to restore homeostasis and normal metabolic fluxes thorough the synthesis and/or accumulation of specific compounds related to mechanical forces distribution along the bent taproot.

Conclusion

The data demonstrate that the impact of mechanical stress on plant biology can efficiently be studied by NMR-based metabolomics.
  相似文献   

15.
16.
Zylka MJ  Rice FL  Anderson DJ 《Neuron》2005,45(1):17-25
The brain receives sensory input from diverse peripheral tissues, including the skin, the body's largest sensory organ. Using genetically encoded axonal tracers expressed from the Mrgprd locus, we identify a subpopulation of nonpeptidergic, nociceptive neurons that project exclusively to the skin, and to no other peripheral tissue examined. Surprisingly, Mrgprd(+) innervation is restricted to the epidermis and absent from specialized sensory structures. Furthermore, Mrgprd(+) fibers terminate in a specific layer of the epidermis, the stratum granulosum. This termination zone is distinct from that innervated by most CGRP(+) neurons, revealing that peptidergic and nonpeptidergic epidermal innervation is spatially segregated. The central projections deriving from these distinct epidermal innervation zones terminate in adjacent laminae in the dorsal spinal cord. Thus, afferent input from different layers of the epidermis is conveyed by topographically segregated sensory circuits, suggesting that at least some aspects of sensory information processing may be organized along labeled lines.  相似文献   

17.
18.
The diversity and function of sponge-associated symbionts is now increasingly understood; however, we lack an understanding of how they dynamically behave to ensure holobiont stability in the face of environmental variation. Here, we performed a metatransciptomic analysis on three microbial symbionts of the sponge Cymbastela concentrica in situ over 14 months and through differential gene expression and correlation analysis to environmental variables uncovered differences that speak to their metabolic activities and level of symbiotic and environmental interactions. The nitrite-oxidizing Ca. Porinitrospira cymbastela maintained a seemingly stable metabolism, with the few differentially expressed genes related only to stress responses. The heterotrophic Ca. Porivivens multivorans displayed differential use of holobiont-derived compounds and respiration modes, while the ammonium-oxidizing archaeon Ca. Nitrosopumilus cymbastelus differentially expressed genes related to phosphate metabolism and symbiosis effectors. One striking similarity between the symbionts was their similar variation in expression of stress-related genes. Our time-series study showed that the microbial community of C. concentrica undertakes dynamic gene expression adjustments in response to the surroundings, tuned to deal with general stress and metabolic interactions between holobiont members. The success of these dynamic adjustments likely underpins the stability of the sponge holobiont and may provide resilience against environmental change.  相似文献   

19.
This work reports the implementation and optimization of a method for high-throughput analysis of metabolites produced by the breakdown of natural polysaccharides by microorganisms. Our simple protocol enables simultaneous separation and quantification of more than 40 different sugars and sugar derivatives, in addition to several organic acids in complex media, using 50-mul samples and a standard gas chromatography-mass spectrometry platform that was fully optimized for this purpose. As an implementation proof-of-concept, we assayed extracellular metabolite levels of three bacterial strains cultivated on complex medium rich in polysaccharides and under identical growth conditions. We demonstrate that the metabolic footprinting profile data distinguish among sample types such as typical metabolomics data. Moreover, we demonstrate that the differential metabolite-level data provide insight on specific fibrolytic activity of the different microbial strains and lay the groundwork for integrated proteome-metabolome studies of fiber-degrading microorganisms.  相似文献   

20.
Summary Black cuticles of larvae and pupae from various Lepidoptera were studied by light and electron microscopy. There are striking differences in the representation of black pigmentation, especially at the ultrastructural level. Two types may be described: 1. With the light microscope black melanin-like grana, electron-dense electron microscopically, are found in the distal parts of the exocuticle. This type is demonstrated in larvae of Celerio euphorbiae, Papilio machaon, and Phalera bucephala. 2. With the light microscope a dark homogeneous layer in the distal exocuticle can be recognized, however, electron microscopically no structures correlated with this dark pigment layer. This type of pigmentation was present in pupae of Pieris brassicae and Aglais urticae; in Pieris larvae the dark pigmented layer appeared to be limited to the epicuticle. In Celerio processes of the epidermal cells are involved in transporting precursors to the exocuticle. The conclusion was reached that black pigmentation in cuticles is based on different mechanisms as proposed by structural features. The two likely mechanisms are melanization and sclerotization.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 87, project A1, granted to Prof. Bückmann)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号