首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Colorectal cancer (CRC) is a clinically heterogeneous disease, which necessitates a variety of treatments and leads to different outcomes. Only some CRC patients will benefit from neoadjuvant chemotherapy (NACT).

Objectives

An accurate prediction of response to NACT in CRC patients would greatly facilitate optimal personalized management, which could improve their long-term survival and clinical outcomes.

Methods

In this study, plasma metabolite profiling was performed to identify potential biomarker candidates that can predict response to NACT for CRC. Metabolic profiles of plasma from non-response (n?=?30) and response (n?=?27) patients to NACT were studied using UHPLC–quadruple time-of-flight)/mass spectrometry analyses and statistical analysis methods.

Results

The concentrations of nine metabolites were significantly different when comparing response to NACT. The area under the receiver operating characteristic curve value of the potential biomarkers was up to 0.83 discriminating the non-response and response group to NACT, superior to the clinical parameters (carcinoembryonic antigen and carbohydrate antigen 199).

Conclusion

These results show promise for larger studies that could result in more personalized treatment protocols for CRC patients.
  相似文献   

2.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fifth most common cause of cancer-related death in Europe with a 5-year survival rate of <5%. Chronic pancreatitis (CP) is a risk factor for PDAC development, but in the majority of cases malignancy is discovered too late for curative treatment. There is at present no reliable diagnostic marker for PDAC available.

Objectives

The aim of the study was to identify single blood-based metabolites or a panel of metabolites discriminating PDAC and CP using liquid chromatography-mass spectrometry (LC-MS).

Methods

A discovery cohort comprising PDAC (n?=?44) and CP (n?=?23) samples was analyzed by LC-MS followed by univariate (Student’s t test) and multivariate (orthogonal partial least squares-discriminant analysis (OPLS-DA)) statistics. Discriminative metabolite features were subject to raw data examination and identification to ensure high feature quality. Their discriminatory power was then confirmed in an independent validation cohort including PDAC (n?=?20) and CP (n?=?31) samples.

Results

Glycocholic acid, N-palmitoyl glutamic acid and hexanoylcarnitine were identified as single markers discriminating PDAC and CP by univariate analysis. OPLS-DA resulted in a panel of five metabolites including the aforementioned three metabolites as well as phenylacetylglutamine (PAGN) and chenodeoxyglycocholate.

Conclusion

Using LC-MS-based metabolomics we identified three single metabolites and a five-metabolite panel discriminating PDAC and CP in two independent cohorts. Although further study is needed in larger cohorts, the metabolites identified are potentially of use in PDAC diagnostics.
  相似文献   

3.

Introduction

Gastric cancer (GC) is a malignant tumor worldwide. As primary pathway for metastasis, the lymphatic system is an important prognostic factor for GC patients. Although the metabolic changes of gastric cancer have been investigated in extensive studies, little effort focused on the metabolic profiling of lymph node metastasis (LNM)-positive or negative GC patients.

Objectives

We performed 1H NMR spectrum of GC tissue samples with and without LNM to identify novel potential metabolic biomarkers in the process of LNM of GC.

Methods

1H NMR-based untargeted metabolomics approach combined with multivariate statistical analyses were used to study the metabolic profiling of tissue samples from LNM-positive GC patients (n?=?40), LNM-negative GC patients (n?=?40) and normal controls (n?=?40).

Results

There was a clear separation between GC patients and normal controls, and 33 differential metabolites were identified in the study. Moreover, GC patients were also well-classified according to LNM-positive or negative. Totally eight distinguishing metabolites were selected in the metabolic profiling of GC patients with LNM-positive or negative, suggesting the metabolic dysfunction in the process of LNM. According to further validation and analysis, especially BCAAs metabolism (leucine, isoleucine, valine), GSH and betaine may be as potential factors of diagnose and prognosis of GC patients with or without LNM.

Conclusion

To our knowledge, this is the first metabolomics study focusing on LNM of GC. The identified distinguishing metabolites showed a promising application on clinical diagnose and therapy prediction, and understanding the mechanism underlying the carcinogenesis, invasion and metastasis of GC.
  相似文献   

4.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

5.

Introduction

Untargeted metabolomics studies for biomarker discovery often have hundreds to thousands of human samples. Data acquisition of large-scale samples has to be divided into several batches and may span from months to as long as several years. The signal drift of metabolites during data acquisition (intra- and inter-batch) is unavoidable and is a major confounding factor for large-scale metabolomics studies.

Objectives

We aim to develop a data normalization method to reduce unwanted variations and integrate multiple batches in large-scale metabolomics studies prior to statistical analyses.

Methods

We developed a machine learning algorithm-based method, support vector regression (SVR), for large-scale metabolomics data normalization and integration. An R package named MetNormalizer was developed and provided for data processing using SVR normalization.

Results

After SVR normalization, the portion of metabolite ion peaks with relative standard deviations (RSDs) less than 30 % increased to more than 90 % of the total peaks, which is much better than other common normalization methods. The reduction of unwanted analytical variations helps to improve the performance of multivariate statistical analyses, both unsupervised and supervised, in terms of classification and prediction accuracy so that subtle metabolic changes in epidemiological studies can be detected.

Conclusion

SVR normalization can effectively remove the unwanted intra- and inter-batch variations, and is much better than other common normalization methods.
  相似文献   

6.

Introduction

Polycystic ovary syndrome (PCOS) is a complex, heterogeneous endocrinological disorder with uncertain pathogenesis and is very common in women of reproductive age. There are few reports of utilizing metabolomics approach to understand the complex pathophysiology of PCOS. However, excluding one previous NMR-based metabolomics study, none of the study was conducted in Indian population.

Objective

The study aims to compare the serum metabolomic profile of PCOS women with controls from the Eastern region of India.

Methods

PCOS women (n?=?35) and healthy control women (n?=?30) undergoing tubal ligation were recruited for this study. Serum metabolic profiles were generated using liquid chromatography–tandem mass spectrometry (LC-MS/MS) and gas chromatography–mass spectrometry (GC-MS). Multivariate statistical analysis was applied to spectral data obtained from both the LC-MS/MS and GC/MS.

Results

Nine metabolites were identified to be most significantly dysregulated in sera of PCOS women; however, few other identified metabolites were also altered but with lesser significance. Amongst these metabolites, riboflavin, sucrose, adenine and N-acetyl glycine, phosphoric acid and cortisol were down-regulated, whereas, thymine, cystathionine, and phenylalanine were up-regulated in PCOS when compared with controls. The observed changes in metabolite expression suggested alterations in aminoacyl-tRNA biosynthesis, metabolism of nitrogen, alanine-aspartate-glutamate, galactose, glycine-serine-threonine, and pyrimidine-purine among several metabolic pathways possibly implicated in these PCOS women.

Conclusion

The altered metabolites identified in PCOS women of Eastern Indian population, provide insight into current perceptive of the disease pathology, metabolic involvements, and may be considered as putative markers of PCOS.
  相似文献   

7.

Introduction

Experiments in metabolomics rely on the identification and quantification of metabolites in complex biological mixtures. This remains one of the major challenges in NMR/mass spectrometry analysis of metabolic profiles. These features are mandatory to make metabolomics asserting a general approach to test a priori formulated hypotheses on the basis of exhaustive metabolome characterization rather than an exploratory tool dealing with unknown metabolic features.

Objectives

In this article we propose a method, named ASICS, based on a strong statistical theory that handles automatically the metabolites identification and quantification in proton NMR spectra.

Methods

A statistical linear model is built to explain a complex spectrum using a library containing pure metabolite spectra. This model can handle local or global chemical shift variations due to experimental conditions using a warping function. A statistical lasso-type estimator identifies and quantifies the metabolites in the complex spectrum. This estimator shows good statistical properties and handles peak overlapping issues.

Results

The performances of the method were investigated on known mixtures (such as synthetic urine) and on plasma datasets from duck and human. Results show noteworthy performances, outperforming current existing methods.

Conclusion

ASICS is a completely automated procedure to identify and quantify metabolites in 1H NMR spectra of biological mixtures. It will enable empowering NMR-based metabolomics by quickly and accurately helping experts to obtain metabolic profiles.
  相似文献   

8.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

9.

Introduction

Urine is an ideal matrix for metabolomics investigation due to its non-invasive nature of collection and its rich metabolite content. Despite the advancements in mass spectrometry and 1H-NMR platforms in urine metabolomics, the statistical analysis of the generated data is challenged with the need to adjust for the hydration status of the person. Normalization to creatinine or osmolality values are the most adopted strategies, however, each technique has its challenges that can hinder its wider application. We have been developing targeted urine metabolomic methods to differentiate two important respiratory diseases, namely asthma and chronic obstructive pulmonary disease (COPD).

Objective

To assess whether the statistical model of separation of diseases using targeted metabolomic data would be improved by normalization to osmolality instead of creatinine.

Methods

The concentration of 32 metabolites was previously measured by two liquid chromatography-tandem mass spectrometry methods in 51 human urine samples with either asthma (n?=?25) or COPD (n?=?26). The data was normalized to creatinine or osmolality. Statistical analysis of the normalized values in each disease was performed using partial least square discriminant analysis (PLS-DA). Models of separation of diseases were compared.

Results

We found that normalization to creatinine or osmolality did not significantly change the PLS-DA models of separation (R2Q2?=?0.919, 0.705 vs R2Q2?=?0.929, 0.671, respectively). The metabolites of importance in the models remained similar for both normalization methods.

Conclusion

Our findings suggest that targeted urine metabolomic data can be normalized for hydration using creatinine or osmolality with no significant impact on the diagnostic accuracy of the model.
  相似文献   

10.

Introduction

Human plasma metabolomics offer powerful tools for understanding disease mechanisms and identifying clinical biomarkers for diagnosis, efficacy prediction and patient stratification. Although storage conditions can affect the reliability of data from metabolites, strict control of these conditions remains challenging, particularly when clinical samples are included from multiple centers. Therefore, it is necessary to consider stability profiles of each analyte.

Objectives

The purpose of this study was to extract unstable metabolites from vast metabolome data and identify factors that cause instability.

Method

Plasma samples were obtained from five healthy volunteers, were stored under ten different conditions of time and temperature and were quantified using leading-edge metabolomics. Instability was evaluated by comparing quantitation values under each storage condition with those obtained after ?80 °C storage.

Result

Stability profiling of the 992 metabolites showed time- and temperature-dependent increases in numbers of significantly changed metabolites. This large volume of data enabled comparisons of unstable metabolites with their related molecules and allowed identification of causative factors, including compound-specific enzymatic activity in plasma and chemical reactivity. Furthermore, these analyses indicated extreme instability of 1-docosahexaenoylglycerol, 1-arachidonoylglycerophosphate, cystine, cysteine and N6-methyladenosine.

Conclusion

A large volume of data regarding storage stability was obtained. These data are a contribution to the discovery of biomarker candidates without misselection based on unreliable values and to the establishment of suitable handling procedures for targeted biomarker quantification.
  相似文献   

11.

Introduction

Improving feed utilization in cattle is required to reduce input costs, increase production, and ultimately improve sustainability of the beef cattle industry. Characterizing metabolic differences between efficient and non-efficient animals will allow stakeholders to identify more efficient cattle during backgrounding.

Objectives

This study used an untargeted metabolomics approach to determine differences in serum metabolites between animals of low and high residual feed intake.

Methods

Residual feed intake was determined for 50 purebred Angus steers and 29 steers were selected for the study steers based on low versus high feed efficiency. Blood samples were collected from steers and analyzed using untargeted metabolomics via mass spectrometry. Metabolite data was analyzed using Metaboanalyst, visualized using orthogonal partial least squares discriminant analysis, and p-values derived from permutation testing. Non-esterified fatty acids, urea nitrogen, and glucose were measured using commercially available calorimetric assay kits. Differences in metabolites measured were grouped by residual feed intake was measured using one-way analysis of variance in SAS 9.4.

Results

Four metabolites were found to be associated with differences in feed efficiency. No differences were found in other serum metabolites, including serum urea nitrogen, non-esterified fatty acids, and glucose.

Conclusions

Four metabolites that differed between low and high residual feed intake have important functions related to nutrient utilization, among other functions, in cattle. This information will allow identification of more efficient steers during backgrounding.
  相似文献   

12.

Introduction

Metabolomics analysis depends on the identification and validation of specific metabolites. This task is significantly hampered by the absence of well-characterized reference standards. The one-carbon carrier 10-formyltetrahydrofolate acts as a donor of formyl groups in anabolism, where it is a substrate in formyltransferase reactions in purine biosynthesis. It has been reported as an unstable substance and is currently unavailable as a reference standard for metabolomics analysis.

Objectives

The current study was undertaken to provide the metabolomics community thoroughly characterized 10-formyltetrahydrofolate along with analytical methodology and guidelines for its storage and handling.

Methods

Anaerobic base treatment of 5,10-methenyltetrahydrofolate chloride in the presence of antioxidant was utilized to prepare 10-formyltetrahydrofolate.

Results

Pure 10-formyltetrahydrofolate has been prepared and physicochemically characterized. Conditions toward maintaining the stability of a solution of the dipotassium salt of 10-formyltetrahydrofolate have been determined.

Conclusion

This study describes the facile preparation of pure (>90%) 10-formyltetrahydrofolate, its qualitative physicochemical characterization, as well as conditions to enable its use as a reference standard in physiologic samples.
  相似文献   

13.

Introduction

Induction of tryptophan (TRP) catabolism is an adaptation mechanism to restrict excessive acute immune response in tissues. In the tumour microenvironment, TRP catabolism’s dysregulation plays an important role in local antitumour immune response suppression.

Aim

We investigated changes in the plasma concentrations of TRP and its metabolites in a cohort of colorectal cancer (CRC) patients at different tumour stages and in subjects at risk of developing CRC. TRP metabolites were assessed along kynurenine and serotonin pathways, and the activity of involved enzymes and their tissue expression were monitored.

Method

Plasmatic levels of tryptophan metabolites were quantified in 80 patients’ plasma samples by means of High-Pressure Liquid Chromatography coupled to UltraViolet/Fluorescence Detectors (HPLC-UV/FD), after a simple dilution step. Tissue IDO1 gene expression during to the adenoma-carcinoma sequence and samples were obtained from formalin-fixed and paraffin-embedded (FFPE) normal colon and tumour tissues from a subset of patients (n?=?21).

Results

Altered TRP concentrations were detected in plasma samples concomitant to pre-cancerous lesion and persisted during the adenoma-carcinoma transition. Moreover, the anatomical site of cancer lesions (colon or rectum) strongly influences the TRP metabolic profiles. Colon cancer patients exhibited increased TRP catabolism with respect to those affected by rectal cancer, suggesting that TRP’s metabolism alterations play an important role in the onset and progression of colon cancer, but not in those of rectal cancer.
  相似文献   

14.

Introduction

Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow.

Objectives

Merge in the same platform the steps required for metabolomics data processing.

Methods

KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform.

Results

The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation.

Conclusion

KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS and LC–MS open profiling data.
  相似文献   

15.
Effect of gut microbiota on host whole metabolome   总被引:1,自引:0,他引:1  

Introduction

Recent advances in microbiome research have revealed the diverse participation of gut microbiota in a number of diseases. Bacteria-specific endogenous small molecules are produced in the gut, are transported throughout the whole body by circulation, and play key roles in disease establishment. However, the factors and mechanisms underlying these microbial influences largely remain unknown.

Objectives

The purpose of this study was to use metabolomics to better understand the influence of microbiota on host physiology.

Methods

Germ-free mice (GF) were orally administered with the feces of specific pathogen-free (SPF) mice and were maintained in a vinyl isolator for 4 weeks for establishing the so-called ExGF mice. Comparative metabolomics was performed on luminal contents, feces, urine, plasma, and tissues of GF and ExGF mice.

Results

The metabolomics profile of 1716 compounds showed marked difference between GF and ExGF for each matrix. Intestinal differences clearly showed the contribution of microbiota to host digestive activities. In addition, colonic metabolomics revealed the efficient conversion of primary to secondary metabolites by microbiota. Furthermore, metabolomics of tissues and excrements demonstrated the effect of microbiota on the accumulation of metabolites in tissues and during excretion. These effects included known bacterial effects (such as bile acids and amino acids) as well as novel ones, including a drastic decrease of sphingolipids in the host.

Conclusion

The diverse effects of microbiota on different sites of the host metabolome were revealed and novel influences on host physiology were demonstrated. These findings should contribute to a deeper understanding of the influence of gut microbiota on disease states and aid in the development of effective intervention strategies.
  相似文献   

16.

Introduction

Global metabolomics analyses using body fluids provide valuable results for the understanding and prediction of diseases. However, the mechanism of a disease is often tissue-based and it is advantageous to analyze metabolomic changes directly in the tissue. Metabolomics from tissue samples faces many challenges like tissue collection, homogenization, and metabolite extraction.

Objectives

We aimed to establish a metabolite extraction protocol optimized for tissue metabolite quantification by the targeted metabolomics AbsoluteIDQ? p180 Kit (Biocrates). The extraction method should be non-selective, applicable to different kinds and amounts of tissues, monophasic, reproducible, and amenable to high throughput.

Methods

We quantified metabolites in samples of eleven murine tissues after extraction with three solvents (methanol, phosphate buffer, ethanol/phosphate buffer mixture) in two tissue to solvent ratios and analyzed the extraction yield, ionization efficiency, and reproducibility.

Results

We found methanol and ethanol/phosphate buffer to be superior to phosphate buffer in regard to extraction yield, reproducibility, and ionization efficiency for all metabolites measured. Phosphate buffer, however, outperformed both organic solvents for amino acids and biogenic amines but yielded unsatisfactory results for lipids. The observed matrix effects of tissue extracts were smaller or in a similar range compared to those of human plasma.

Conclusion

We provide for each murine tissue type an optimized high-throughput metabolite extraction protocol, which yields the best results for extraction, reproducibility, and quantification of metabolites in the p180 kit. Although the performance of the extraction protocol was monitored by the p180 kit, the protocol can be applicable to other targeted metabolomics assays.
  相似文献   

17.

Introduction

Lung cancer continues to be the leading cause of cancer-related mortality worldwide. Early detection has proven essential to extend survival. Genomic and proteomic advances have provided impetus to the effort dedicated to detect and diagnose the disease at an earlier stage. Recently, the study of metabolites associated with tumor formation and progression has inaugurated the era of cancer metabolomics to aid in this effort.

Objectives

This review summarizes recent work regarding novel metabolites with the potential to serve as biomarkers for early lung tumor detection, evaluation of disease progression, and prediction of patient outcomes.

Method

We compare the metabolite profiling of cancer patients with that of healthy individuals, and the metabolites identified in tissue and biofluid samples and their usefulness as lung cancer biomarkers. We discuss metabolite alterations in tumor versus paired non-tumor lung tissues, as well as metabolite alterations in different stages of lung cancers and their usefulness as indicators of disease progression and overall survival. We evaluate metabolite dysregulation in different types of lung cancers, and those associated with lung cancer versus other lung diseases. We also examine metabolite differences between lung cancer patients and smokers/risk-factor individuals.

Result

Although an extensive list of metabolites has been evaluated to distinguish between these cases, refinement of methods is further required for adequate patient diagnosis and treatment.

Conclusion

We conclude that with technological advancement, metabolomics may be able to replace more invasive and costly diagnostic procedures while also providing the means to more effectively tailor treatment to patient-specific tumors.
  相似文献   

18.

Background

Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding.

Aim of Review

We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality.

Key Scientific Concepts of Review

Translational metabolomics applied to crop breeding programs.
  相似文献   

19.

Introduction

Processing delays after blood collection is a common pre-analytical condition in large epidemiologic studies. It is critical to evaluate the suitability of blood samples with processing delays for metabolomics analysis as it is a potential source of variation that could attenuate associations between metabolites and disease outcomes.

Objectives

We aimed to evaluate the reproducibility of metabolites over extended processing delays up to 48 h. We also aimed to test the reproducibility of the metabolomics platform.

Methods

Blood samples were collected from 18 healthy volunteers. Blood was stored in the refrigerator and processed for plasma at 0, 15, 30, and 48 h after collection. Plasma samples were metabolically profiled using an untargeted, ultrahigh performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) platform. Reproducibility of 1012 metabolites over processing delays and reproducibility of the platform were determined by intraclass correlation coefficients (ICCs) with variance components estimated from mixed-effects models.

Results

The majority of metabolites (approximately 70% of 1012) were highly reproducible (ICCs?≥?0.75) over 15-, 30- or 48-h processing delays. Nucleotides, energy-related metabolites, peptides, and carbohydrates were most affected by processing delays. The platform was highly reproducible with a median technical ICC of 0.84 (interquartile range 0.68–0.93).

Conclusion

Most metabolites measured by the UPLC–MS/MS platform show acceptable reproducibility up to 48-h processing delays. Metabolites of certain pathways need to be interpreted cautiously in relation to outcomes in epidemiologic studies with prolonged processing delays.
  相似文献   

20.

Introduction

The differences in fecal metabolome between ankylosing spondylitis (AS)/rheumatoid arthritis (RA) patients and healthy individuals could be the reason for an autoimmune disorder.

Objectives

The study explored the fecal metabolome difference between AS/RA patients and healthy controls to clarify human immune disturbance.

Methods

Fecal samples from 109 individuals (healthy controls 34, AS 40, and RA 35) were analyzed by 1H NMR spectroscopy. Data were analyzed with principal component analysis (PCA) and orthogonal projection to latent structure discriminant (OPLS-DA) analysis.

Results

Significant differences in the fecal metabolic profiles could distinguish AS/RA patients from healthy controls but could not distinguish between AS and RA patients. The significantly decreased metabolites in AS/RA patients were butyrate, propionate, methionine, and hypoxanthine. Significantly increased metabolites in AS/RA patients were taurine, methanol, fumarate, and tryptophan.

Conclusion

The metabolome variations in feces indicated AS and RA were two homologous diseases that could not be distinguished by 1H NMR metabolomics.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号