共查询到20条相似文献,搜索用时 9 毫秒
1.
A Possible Role of Glutathione as an Endogenous Agonist at the N-Methyl-d-Aspartate Recognition Domain in Rat Brain 总被引:1,自引:0,他引:1
Kiyokazu Ogita Riyo Enomoto Fukiko Nakahara Naoya Ishitsubo Yukio Yoneda 《Journal of neurochemistry》1995,64(3):1088-1096
Abstract: Glutathione, both reduced (GSH) and oxidized (GSSG), was effective in displacing binding of l -[3H]-glutamic acid (l -[3H]Glu) and dl -(E)-2-[3H]amino-4-propyl-5-phosphono-3-pentenoic acid ([3H]CGP-39653) in rat brain synaptic membranes, with less potent displacement of binding of dl -α-amino-3-hydroxy-5-[3H]-methylisoxazole-4-propionic and [3H]kainic acids. Liquid chromatographic analysis revealed that both GSH and GSSG were contaminated with l -Glu by <1%. Both GSH and GSSG potentiated (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) binding in a manner similar to that found with l -Glu. Pre-treatment with glutamate dehydrogenase (GDH) induced a marked rightward shift of the concentration-response curve for l -Glu in the presence of NAD without affecting that in its absence, whereas GDH was ineffective in affecting the potentiation by both GSH and GSSG even in the presence of NAD. In the presence of GSH at a maximally effective concentration, both glycine (Gly) and spermidine potentiated [3H]MK-801 binding to a somewhat smaller extent than that found in the presence of l -Glu at a maximally effective concentration. The potentiation of [3H]MK-801 binding by GSH was invariably attenuated by addition of CGP-39653, d -2-amino-5-phosphonovaleric acid (d -AP5), and 5,7-dichlorokynurenic acid (DCKA), whereas GSH was effective in diminishing potencies of CGP-39653, d -AP5, DCKA, and 6,7-dichloroquinoxaline-2,3-dione to inhibit [3H]MK-801 binding when determined in the presence of both l -Glu and Gly. These results suggest that glutathione may be an endogenous agonist selective for the N-methyl-d -aspartate (NMDA) recognition domain on the NMDA receptor ionophore complex. 相似文献
2.
Abstract: Pretreatment with Triton X-100 more than doubled the binding of radiolabeled 5,7-dichlorokynurenic acid (DCKA), a proposed antagonist at a glycine (Gly) recognition domain on the N-methyl-d -aspartate (NMDA) receptor ionophore complex, in rat brain synaptic membranes. The binding exhibited an inverse temperature dependency, reversibility, and saturability, the binding sites consisting of a single component with a high affinity (27.5 nM) and a relatively low density (2.87 pmol/mg of protein). The binding of both [3H]DCKA and [3H]Gly was similarly displaced by numerous putative agonists and antagonists at the Gly domain in a concentration-dependent manner at a concentration range of 100 nM to 0.1 mM. Among the 24 putative ligands tested, DCKA was the second most potent displacer of the binding of both radioligands with no intrinsic affinity for the binding of [3H]kainic acid and α-amino-3-hydroxy-5-[3H]methylisoxazole-4-propionic acid (AMPA) to the non-NMDA receptors. In contrast, the other proposed potent Gly antagonist, 5,7-dinitroquinoxaline-2,3-dione, was active in displacing the binding of [3H]glutamic ([3H]Glu) and D,L-(E)-2-amino-4-[3H]propyl-5-phosphono-3-pentenoic acids to the NMDA recognition domain with a relatively high affinity for the non-NMDA receptors. In addition, the proposed antagonist at the AMPA-sensitive receptor, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline, not only displaced weakly the binding of both [3H]- Gly and [3H]DCKA, but also inhibited the binding of (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) to an ion channel associated with the NMDA-sensitive receptor in the presence of added Glu alone in a manner sensitive to antagonism by further added Gly. Clear correlations were seen between potencies of the displacers to displace [3H]DCKA binding and [3H]Gly binding, in addition to between the potencies to displace [3H]-DCKA or [3H]Gly binding and to potentiate or inhibit [3H]MK-801 binding. All quinoxalines tested were invariably more potent displacers of [3H]DCKA binding than [3H]Gly binding, whereas kynurenines were similarly effective in displacing the binding of both [3H]Gly and [3H]-DCKA. These results undoubtedly give support to the proposal that [3H]DCKA is one useful radioligand available in terms of its high selectivity and affinity for the Gly domain in the brain. Possible multiplicity of the Gly domain is suggested by the differential pharmacological profiles between the binding of [3H]Gly and [3H]DCKA. 相似文献
3.
Pingping Zuo Kiyokazu Ogita Takeo Suzuki Daiken Han Yukio Yoneda 《Journal of neurochemistry》1993,61(5):1865-1873
Abstract— Pretreatment with sulfhydryl-reactive agents, such as N-ethylmaleimide and p-chloromercuriphenylsul-fonic acid, invariably resulted in marked inhibition of the binding of dl -(E)-2-amino-4-[3H]propyl-5-phosphono-3-pentenoic acid ([3H]CGP 39653), a competitive antagonist at an N-methyl-d -aspartate (NMDA)-sensitive subclass of central excitatory amino acid receptors, in brain synaptic membranes extensively washed and treated with Triton X-100, but did not significantly affect the binding of L-[3H]-glutamic acid ([3H]Glu), an endogenous agonist. The pre-treatment was effective in reducing the binding of [3H]-CGP 39653 at equilibrium, without altering the initial association rate, and decreased the affinity for the ligand. Pretreatment with sulfhydryl-reactive agents also enhanced the potencies of NMDA agonists to displace [3H]-CGP 39653 binding and attenuated those of NMDA antagonists, but had little effect on the potencies of the agonists and antagonists to displace [3H]Glu binding. The binding of both [3H]CGP 39653 and [3H]Glu was similarly sensitive to pretreatment with four different proteases in Tritontreated membranes, whereas pretreatment with phospho-lipase A2 or C markedly inhibited [3H]CGP 39653 binding without altering [3H]Glu binding. Moreover, both phospho-lipases not only induced enhancement of the abilities of NMDA agonists to displace the binding of [3H]CGP 39653 and [3H]Glu, but also caused diminution of those of NMDA antagonists. These results suggest that both sulfhydryl-reactive agents and phospholipases may predominantly interfere with radiolabeling of the NMDA recognition domain in a state favorable to an antagonist by [3H]CGP 39653, with concomitant facilitation of that in an agonist-preferring form by [3H]Glu. The possible presence of multiple forms of the NMDA recognition domain is further supported by these data. 相似文献
4.
Abstract: Addition of several polyamines, including spermidine and spermine, was effective in inhibiting binding of the antagonist ligand [3 H] 5, 7-dichlorokynurenic acid ([3 H]- DCKA) but not of the agonist ligand [3 H] glycine ([3 H] Gly) to a Gly recognition domain on the N -methyl-D-aspartic acid (NMDA) receptor ionophore complex in rat brain synaptic membranes. In contrast, [3 H] DCKA binding was significantly potentiated by addition of proposed polyamine antagonists, such as ifenprodil and (±)-α-(4-chlorophenyl)-4- [(4-fluorophenyl)methyl]-1-piperidine ethanol, with [3 H] Gly binding being unchanged. The inhibition by spermidine was significantly prevented by inclusion of ifenprodil. In addition, spermidine significantly attenuated the abilities of four different antagonists at the Gly domain to displace [3 H] DCKA binding virtually without affecting those of four different agonists. Phospholipases A2 and C and p -chloromercuribenzosulfonic acid were invariably effective in significantly inhibiting [3 H] DCKA binding with [3 H] Gly binding being unaltered. Moreover, the densities of [3 H] DCKA binding were not significantly different from those of [3 H]- Gly binding in the hippocampus and cerebral cortex, whereas the cerebellum had more than a fourfold higher density of [3 H] Gly binding than of [3 H] DCKA binding. These results suggest that the Gly domain may have at least two different forms based on the preference to agonists and antagonists in the rodent brain. 相似文献
5.
Abstract: Immobilization stress in water for 3 h was effective in inducing significant potentiation of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine ([3H]MK-801) binding 5 days after the stressful manipulation in rat hypothalamus and cerebellum when determined before equilibrium in the absence of any added agonists, in addition to resulting in marked reduction of rearing behaviors of animals. However, the stressful manipulation failed to modulate the [3H]MK-801 binding in other central regions examined, and binding of either [3H]dl -α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid or [3H]kainic acid was not significantly affected in all brain structures studied 5 days after the stress application. In contrast, the stressful procedures potentiated binding of both l -[3H]glutamic ([3H]Glu) and [3H]dl -(E)-2-amino-4-propyl-5-phosphono-3-pentenoic ([3H]CGP-39653) acids in the hypothalamus and cerebellum 5 days later, without affecting binding of [3H]-glycine and 5,7-dichloro[3H]kynurenic acid. The systemic administration of corticosterone mimicked the stress manipulation at doses of 5–50 mg/kg in terms of inducing significant enhancement of binding of both [3H]Glu and [3H]CGP-39653 in the hypothalamus and cerebellum when determined 5 days after the single administration. The translation inhibitor cycloheximide was effective in preventing the stress-induced potentiation of [3H]Glu binding in the cerebellum, without altering that in the hypothalamus. Furthermore, the stressful handling significantly increased the densities of [3H]Glu binding sites in the hypothalamus and cerebellum, with the affinities being unchanged. These results suggest that stress may preferentially potentiate binding of radioligands to the N-methyl-d -aspartate recognition domain through facilitation of de novo biosynthesis in rat hypothalamus and cerebellum. 相似文献
6.
Solubilization of the N-Methyl-d-Aspartate Receptor Channel Complex from Rat and Porcine Brain 总被引:4,自引:4,他引:0
Ruth M. McKernan Sandra Castro Judith A. Poat Erik H. F. Wong 《Journal of neurochemistry》1989,52(3):777-785
The N-methyl-D-aspartate (NMDA) receptor complex as defined by the binding of [3H]MK-801 has been solubilized from membranes prepared from both rat and porcine brain using the anionic detergent deoxycholate (DOC). Of the detergents tested DOC extracted the most receptors (21% for rat, 34% for pig), and the soluble complex, stabilized by the presence of MK-801, could be stored for up to 1 week at 4 degrees C with less than 25% loss in activity. Receptor preparations from both species exhibited [3H]MK-801 binding properties in solution very similar to those observed in membranes (Bmax = 485 +/- 67 fmol/mg of protein, KD = 11.5 +/- 2.9 nM in rat; Bmax = 728 +/- 108 fmol/mg of protein, KD = 7.1 +/- 1.6 nM in pig, n = 3). The pharmacological profile of the solubilized [3H]MK-801 binding site was virtually identical to that observed in membranes. The rank order of potency of: MK-801 greater than (-)-MK-801 = thienylcyclohexylpiperidine greater than dexoxadrol greater than SKF 10,047 greater than ketamine, for inhibition of [3H]MK-801 binding, was observed in all preparations. The receptor complex in solution exhibited many of the characteristic modulations observed in membranes.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
Abstract: [3 H]Glutamate uptake and binding studies were performed in the visual cortices, lateral geniculate nuclei (LGN), and superior colliculi of 3-month-old rats with one eyelid surgically closed from postnatal day 10 (monocular deprivation). Uptake and binding were highest in the lateral geniculate nucleus followed by the visual cortex (69% and 15%, respectively compared to LGN values) and the superior colliculus (32% and 59% of LGN values). Monocular deprivation did not affect [3 H]glutamate uptake in any of the visual regions examined. However, a 46% decrease in [3 H]glutamate binding in the lateral geniculate nucleus ipsilateral to the sutured eye was detected. Binding levels in other regions were not affected. 相似文献
8.
Andrea Di Lauro Clemente Patrizio Giannini Giovanni Muscettola Anna Maria Greco Pietro de Franciscis 《Chronobiology international》1986,3(2):123-126
Bmax values of the specific binding of [3H]-WB 4101, [3H]-dihydroalprenolol, [3H]-spiperone and [3H]-imipramine to various rat brain regions were determined at 4 hr intervals over 24 hr under circadian conditions. No significant circadian rhythm of binding sites number was found for any receptor investigated in cerebral cortex, hypothalamus or brain stem. Some methodological issues are discussed. 相似文献
9.
Abstract: Binding of [3 H]glutamate, [3 H]glycine, and the glutamate antagonist [3 H]CGS-19755 to NMDA-type glutamate receptors was examined in homogenates of rat forebrain and cerebellum. Most glutamate agonists had a higher affinity at the [3 H]glutamate binding site of cerebellar NMDA receptors as compared with forebrain, whereas all the glutamate antagonists examined showed the reverse relationship. The [3 H]glycine binding site of forebrain and cerebellar NMDA receptors showed a similar pharmacology in both brain regions. In the cerebellum, however, [3 H]glycine bound to a second site with a 10-fold lower affinity and with a pharmacology that resembled that of the glycine/strychnine chloride channel. [3 H]Glutamate binding was not affected by glycine agonists or antagonists, nor was [3 H]glycine binding affected by glutamate agonists in either forebrain or cerebellum. Both CGS-19755 and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, glutamate antagonists, reduced [3 H]glycine binding in cerebellum, whereas only CGS-19755 was effective in forebrain. Glycine agonists and antagonists modulated [3 H]CGS-19755 binding in forebrain and cerebellum to different extents in the two brain regions. From these studies we conclude that the cerebellar NMDA receptor has a different pattern of modulation at glutamate and glycine sites and that glycine may play a more important role in the control of NMDA function in the cerebellum as compared with forebrain. 相似文献
10.
Swim Stress Increases the Potency of Glycine at the N-Methyl-d-Aspartate Receptor Complex 总被引:1,自引:0,他引:1
Gabriel Nowak †Anna Redmond †Mairead McNamara ‡ Ian A. Paul 《Journal of neurochemistry》1995,64(2):925-927
Abstract: We have previously demonstrated that chronic administration of antidepressants results in a reduction in the potency of glycine to displace 5,7-[3 H]dichlorokynurenic acid (5,7-[3 H]-DCKA) from the strychnine-insensitive glycine recognition site of the NMDA receptor complex. We now report that exposure of rats to the forced swim test results in a 56% increase in the potency of glycine to displace 5,7-[3 H]DCKA from frontal cortical homogenates. These data are consistent with the hypothesis that the forced swim test, a preclinical screen sensitive to acute administration of antidepressant drugs and NMDA receptor antagonists, also results in adaptation of the NMDA receptor complex. Moreover, these data lend further support to the hypothesis that glutamatergic pathways are involved in the neurobiological response to stress and, potentially, in the pathophysiology of depression. 相似文献
11.
Calcium antagonist binding sites were solubilized from rat brain membranes using the detergent 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate (CHAPS). CHAPS-solubilized [3H]nitrendipine binding sites are saturable over a range of 0.05-4 nM and Scatchard analysis reveals a single, high-affinity (KD = 0.49 +/- 0.10 nM), low-capacity (Bmax = 56 +/- 4 fmol/mg of protein) binding site. Reversible ligand competition experiments using solubilized binding sites demonstrated appropriate pharmacologic specificity, with dihydropyridines (nifedipine = nitrendipine greater than Bay K 8644) completely displacing binding, verapamil partially displacing binding, and diltiazem enhancing binding, as previously described in membrane preparations. Lyophilized Crotalus atrox venom was purified by ion exchange chromatography followed by gel filtration to a single peptide band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis. This fraction of molecular weight 60,000 competitively inhibits [3H]nitrendipine binding to both membrane and soluble preparations with an IC50 of 5 micrograms/ml. This polypeptide should serve as a useful ligand for future efforts in purifying the dihydropyridine calcium channel binding site in brain. 相似文献
12.
Joseph B. Monihan Valerie M. Corpus William F. Hood John W. Thomas Robert P. Compton 《Journal of neurochemistry》1989,53(2):370-375
A [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM) has been identified, having characteristics expected of a modulatory component of the N-methyl-D-aspartate receptor complex. Incubation of SPM with [3H]glycine for 10 min at 2 degrees C results in saturable, reversible binding with a KD of 0.234 microM and a Bmax of 9.18 pmol/mg. A pharmacological analysis of this binding site indicates that D-serine (Ki = 0.27 microM), D-alanine (Ki = 1.02 microM), and D-cycloserine (Ki = 2.33 microM) are potent inhibitors of binding, whereas the corresponding L isomers have significantly less activity (Ki = 25.4 microM, 15.9 microM, and greater than 100 microM, respectively). Inactive at concentrations of up to 100 microM were strychnine, L-valine, N,N-dimethylglycine, aminomethylphosphonate, and aminomethylsulfonate. The active compounds were analyzed further for their ability to stimulate [3H]1-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to Triton X-100-washed SPM. Results indicate that the affinity of the compounds for the [3H]glycine recognition site correlates with the ability of these analogues to stimulate [3H]TCP binding. 相似文献
13.
High-Affinity Binding of [3H]Desipramine to Rat Brain: A Presynaptic Marker for Noradrenergic Uptake Sites 总被引:3,自引:0,他引:3
Abstract: High-affinity binding sites (apparent K D = 1.5 nM) for [3 H]desipramine have been demonstrated and characterized in membranes prepared from rat brain. The binding of [3H]desipramine was found to be saturable, reversible, heat-sensitive, sodium-dependent, and regionally distributed among various regions of the brain. High concentrations of [3 H]desipramine binding sites were found in the septum, cerebral cortex, and hypothalamus, whereas lower concentrations were found in the medulla, cerebellum, and corpus striatum. A very good correlation ( r = 0.81, P < 0.001) was observed between the potencies of a series of drugs in inhibiting high-affinity [3 H]desipramine binding and their capacity to block norepinephrine uptake into synaptosomes. In 6-hydroxydopamine-lesioned rats there was a marked decrease in [3 H]norepinephrine uptake and [3H]desipramine binding with no significant alterations in either [3 H]serotonin uptake or [3 H]imipramine binding. These results suggest that the high-affinity binding of [3 HJdesipramine to rat brain membranes is pharmacologically and biochemically distinct from the high-affinity binding of [3H]imipramine, and that there is a close relationship between the high-affinity binding site for [3 H]desipramine and the uptake site for norepinephrine. 相似文献
14.
Strychnine-insensitive [3H]glycine binding was detected in brain synaptic membranes treated with Triton X-100 using a filtration assay method. The binding was a time-dependent, inversely temperature-dependent, and reversible process with a relatively high affinity for the neuroactive amino acid. Scatchard analysis revealed that Triton treatment doubled both the affinity and density of the binding sites, which consisted of a single component. The binding was not only displaced by structurally-related amino acid such as D-serine and D-alanine, but also inhibited by some peptides containing glycine, including glycine methylester and N-methylglycine. These ligands invariably potentiated the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]- cyclohepten-5,10-imine ([3H]MK-801), a noncompetitive antagonist for the N-methyl-D-aspartate-sensitive subclass of the central excitatory amino acid receptors, in a concentration-dependent manner. Among various endogenous tryptophan metabolites, kynurenic acid significantly inhibited the strychnine-insensitive [3H]glycine binding. The Triton treatment did not affect the pharmacological profile of [3H]MK-801 binding sites. These results suggest that brain synaptic membranes treated with Triton X-100 are useful in evaluating the strychnine-insensitive and kynurenate-sensitive binding sites of glycine, which are functionally linked to N-methyl-D-aspartate- sensitive receptor channels. 相似文献
15.
R. Niddam A. Dubois B. Scatton S. Arbilla S. Z. Langer 《Journal of neurochemistry》1987,49(3):890-899
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype. 相似文献
16.
Solubilisation and Characterisation of a Putative Quisqualate-Type Glutamate Receptor from Chick Brain 总被引:3,自引:2,他引:1
The brains of 1-day-old chicks were shown to be a rich source of binding sites with the pharmacological characteristics expected of a quisqualate-type glutamate receptor. alpha-[3H]Amino-3-hydroxy-5-methylisoxazolepropionate ([3H]AMPA) bound with KD and Bmax values, measured at 0 degree C in the presence of the chaotrope potassium thiocyanate, of 55 nM and 2.6 pmol/mg protein. The regional localisations of [3H]AMPA and [3H]kainate binding sites were manifestly different. The membrane-bound [3H]AMPA binding sites were efficiently solubilised by N-octyl-beta-D-glucopyranoside (1%) in the presence of 0.2 M thiocyanate. In the detergent extract the affinity was 69 nM and there was an apparent increase in the number of sites (Bmax, 4.6 pmol/mg protein). The rank order of potency for competitive ligands in displacing [3H]AMPA binding was quisqualate approximately AMPA greater than 6-cyano-7-nitroquinoxaline-2,3-dione greater than L-glutamate greater than kainate and was identical for the membrane-bound and solubilised sites. Dissociation was biphasic with rate constants of 0.117 min-1 and 0.015 min-1. The association rate constants for [3H]AMPA at the solubilised sites were 1.45 x 10(6) M-1 min-1 and 6.55 x 10(6) M-1 min-1. The kinetically derived KD values were 80.7 nM and 2.3 nM. The detection of higher affinity binding sites by kinetic analysis but not by equilibrium binding may be explained by the greater sensitivity of dissociation data to small populations of high-affinity sites.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Sulfhydryl Groups Modulate the Allosteric Interaction Between Glycine Binding Sites at the Inhibitory Glycine Receptor 总被引:2,自引:0,他引:2
Ana Ruiz-Gómez Clara Fernández-Shaw Esperanza Morato Juan Carlos G. Marvizón Jesús Vázquez Fernando Valdivieso Federico Mayor Jr. 《Journal of neurochemistry》1991,56(5):1690-1697
We have investigated the effect of chemical reagents that modify sulfhydryl groups on the ligand binding properties of the glycine receptor (GlyR). The Hill coefficient (nH) for the displacement of [3H]strychnine binding by glycine was increased from approximately 0.8 to values significantly above 1 (approximately 1.2-1.4) in membranes pretreated with the disulfide-reducing agent dithiothreitol or glutathione. However, the affinity of strychnine or glycine for the GlyR was not affected by these treatments. This indicates that several glycine binding sites interact cooperatively for displacing bound strychnine under such experimental circumstances. A similar increase in the nH for glycine has been observed when the temperature of the binding assay was increased to 37 degrees C. Combination of dithiothreitol pretreatment and increased binding temperature led to nH variations similar to those observed with either of these treatments alone, a finding suggesting that their mechanisms of action are not independent. Conversely, modification of rat spinal cord membranes or of purified and reconstituted GlyR preparations with the sulfhydryl-alkylating agent N-ethylmaleimide or fluorescein-maleimide decreased nH values to approximately 0.5, without affecting glycine or strychnine affinities. This effect may be caused by an increased heterogeneity of GlyR populations. It is interesting that occupancy of the receptor by glycine or beta-alanine (but not by antagonists) specifically protects from the effects of the different sulfhydryl reagents. Moreover, the presence of some of the Eccles' anions, i.e., anions that permeate through the channels associated with GlyRs and gamma-aminobutyric acidA receptors, seems to be required for the action of both dithiothreitol and N-ethylmaleimide.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
Binding activity of a putative central neurotransmitter, L-glutamic acid, was examined in the supernatant preparations solubilized from rat retinal membranes by Nonidet P-40. [3H]Glutamate binding activity increased linearly with increasing concentrations of the solubilized proteins up to 15 micrograms. The binding activity reached an equilibrium within 10 min at 2 degrees C, while increasing with incubation time up to 60 min at 30 degrees C. Addition of an excess of nonradioactive glutamate rapidly decreased the activity at 30 degrees C. Scatchard analysis revealed that the solubilized retinal binding activity consisted of a single component with a KD of 0.25 microM and a Bmax of 57.4 pmol/mg protein. The solubilized binding activity exhibited a stereospecificity and a structure selectivity to L-glutamate, and was abolished by quisqualate, L-glutamate diethyl ester, and DL-2-amino-3-phosphonopropionate. None of the other agonists and antagonists for the central excitatory amino acid receptors affected the binding activity. Reduction of incubation temperature from 30 degrees C to 2 degrees C resulted in a drastic attenuation of the binding activity due to decrement of the number of the apparent binding sites. Cation-exchange column chromatography revealed that unidentified radioactive material was in fact formed during the incubation of [3H]glutamate with the retinal preparations at 30 degrees C. These results suggest that retinal [3H]glutamate binding activity may be derived at least in part from the quisqualate-sensitive membranous enzyme with a stereospecific and structure-selective high affinity for the central neurotransmitter. 相似文献
19.
F. Fallarino †A. A. Genazzani S. Silla †M. R. L'Episcopo ‡O. Camici ‡L. Corazzi †F. Nicoletti M. C. Fioretti 《Journal of neurochemistry》1995,65(2):912-918
Abstract: [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4°C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of ~70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37°C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors. Although synaptosomal aniracetam binding sites may well be associated with AMPA-sensitive glutamate receptors, specifically bound [3H]aniracetam could not be displaced by cyclothiazide or GYKI 52466, which act as a positive and negative modulator of AMPA receptors, respectively. 相似文献
20.
B. Kenneth Koe Lorraine A. Lebel Carol B. Fox John E. Macor 《Journal of neurochemistry》1992,58(4):1268-1276
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3 H]CP-96,501, was found to bind with a high affinity ( K D , 0.21 n M ) to a single binding site ( n H , 1.0). The receptor density of this site ( B max , 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3 H]5-HT. Competition curves of 16 serotonergic compounds in [3 H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3 H]5-HT or [125 I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3 H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3 H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125 I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3 H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor. 相似文献