首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed analysis of the composition and properties of hydrophobic nuclei and microclusters in pancreatic ribonuclease A (RNase A) has been carried out. Distance calculations for all noncovalently bonded atoms revealed that the average number of nonpolar contacts between a side chain of an amino acid and its neighbors is substantially larger if it involves hydrophobic residues rather than nonhydrophobic ones. However, the difference decreased when the number of contacts per nonpolar group and/or atom were calculated. Three main nuclei and five microclusters were identified, and their quantitative parameters were calculated. These nuclei include hydrophobic residues with a substantial number of nonpolar contacts with the environment (Phe 8, Phe 120, Phe 46, Tyr 25, Tyr 97, Ile 107, Leu 35, Ile 81, Val 54, Val 108, Met 29, Met 30). Hydrophobic nuclei of RNase A differ in shape and in composition, in the number of intranuclear contacts and of associated residues, as well as in their internal mobility. All eight cysteine residues are involved in nonpolar interactions with amino acid residues of hydrophobic nuclei. Active site amino acid residues of RNase A form a noncovalent contact network comprised of themselves, as well as of many conserved residues from hydrophobic nuclei. Sequence alignment with some other members of the RNase A family of proteins shows remarkable similarity in positions and in conservation of the main nonpolar residues, comprising cores of two (out of three) hydrophobic nuclei. A correlation was shown to exist between the average density of contacts for side-chain atoms and the number of amino acids to be found in the appropriate positions in the sequences of related mammalian ribonucleases. However, there are certain amino acid positions in the third, smaller nucleus, which are highly variable within the family. Taking into account that this nucleus is composed of residues belonging to different elements of the secondary structure, it is likely that the mutual orientation of these elements can be somehow different for these proteins.  相似文献   

2.
Twenty-four hydrophobic dicarboxylic acids are described which were evaluated as inhibitors of 14 kDa human platelet phospholipase A2 (HP-PLA2). In general, biarylacetic acid derivatives were found to be more active than biaryl acids or biarylpropanoic acids. More potent inhibitors were obtained when hydrophobic groups were attached to the biaryl acid nucleus using an olefin linkage as compared to an ether linkage. Compounds with larger hydrophobic groups were usually more potent inhibitors of HP-PLA2. Five of the compounds disclosed in this report (2, 4, 28, 36b and 36i) were found to possess significant anti-inflammatory activity in a phorbol ester induced mouse ear edema model of chronic inflammation.  相似文献   

3.
We present the application of a new method for analysis of nonpolar structure of proteins. A detailed analysis of the composition and properties of nonpolar nuclei and microclusters of microbial ribonucleases with known sequence have been carried out on the basis of 3D-structure of RNase Pbi and that of RNase Ti. It has been shown that all residues in nonpolar nuclei have high homology, about 95% for proteins with an identical scheme of S-S bridges and about 75% for nonidentical scheme of S-S bridges. The stability of nonpolar nuclei, conservation of their composition and their position in the protein globule allows one to assume that they play an important functional role in protein structure and possibly can be considered as independent structural elements of 3D-structure of a protein.  相似文献   

4.
We investigated the structural determinants of the stability of a designed beta-hairpin containing a natural hydrophobic cluster from the protein GB1 and a D-Pro-Gly turn forming sequence. The results of our simulations shed light on the factors leading to an ordered secondary structure in a model peptide: in particular, the importance of the so-called diagonal interactions in forming a stable hydrophobic nucleus in the beta-hairpin, together with the more obvious lateral interactions, is examined. With the use of long timescale MD simulations in explicit water, we show the role of diagonal interactions in driving the peptide to the correct folded structure (formation of the hydrophobic core with Trp 2, Tyr 4, and Phe 9 in the first stages of refolding) and in keeping it in the ensemble of folded conformations. The combination of the stabilizing effects of the D-Pro-Gly turn sequence and of the hydrophobic nucleus formation thus favors the attainment of an ordered secondary structure compatible with the one determined experimentally. Moreover, our data underline the importance of the juxtapositions of the side chains of amino acids not directly facing each other in the three-dimensional structure. The combination of these interactions forces the peptide to sample a nonrandom portion of the conformational space, as can be seen in the rapid collapse to an ordered structure in the refolding simulation, and shows that the unfolded state can be closely correlated to the folded ensemble of structures, at least in the case of small model peptides.  相似文献   

5.
Using a monoclonal antibody that recognizes a nuclear matrix protein, we selected a cDNA clone from a lambdagt11 human placenta cDNA library. This cDNA encoded a 939-amino acid protein designated nuclear matrix protein NXP-2. Northern blot analysis indicated that NXP-2 was expressed in various tissues at different levels. Forcibly expressed green fluorescent protein-tagged NXP-2 as well as endogenous NXP-2 was localized in the nucleus and distributed to the nuclear matrix. NXP-2 was released from the nuclear matrix when RNase A was included in the buffer for nuclear matrix preparation. Mapping of functional domains was carried out using green fluorescent protein-tagged truncated mutants of NXP-2. The region of amino acids 326-353 was responsible for nuclear matrix binding and contained a cluster of hydrophobic amino acids that was similar to the nuclear matrix targeting signal of acute myeloleukemia protein. The central region (amino acids 500-591) was demonstrated to be required for RNA binding by Northwestern analysis, although NXP-2 lacked a known RNA binding motif. The region of amino acid residues 682-876 was predicted to have a coiled-coil structure. The RNA-binding, nuclear matrix-binding, and coiled-coil domains are structurally separated, suggesting that NXP-2 plays important roles in diverse nuclear functions, including RNA metabolism and maintenance of nuclear architecture.  相似文献   

6.
A novel model for the study of recognition and interaction code of amino acids in peptides, proteins and their complexes has been proposed. The model is designed on the modern notions on the structure and properties of water and hydrophobic bonds. It is assumed that the polar side chains of amino acids during the formation of the hydrophobic bonds act as "ice-breaker", thus destroying the organized structure of water (clusters or "icebergs") around the hydrophobic radicals of amino acids.  相似文献   

7.
It has been found by reversed-phase chromatography that humic acids obtained from vermicomposts of different duration of vermicomposting consist of a hydrophilic and a hydrophobic fractions, the hydrophobic fraction having a substantially lower content of charged, probably carboxylic, groups. A change in the sign of the temperature dependence of the heat capacity of diluted aqueous solutions of humic acids at approximately 58 degrees C has been found by differential scanning microcalorimetry, which indicates an increase in the hydration of hydrophobic groups. A jumpwise increase in heat capacity in the temperature range from 86 to 90 degrees C was also found, which is due likely to the hydration of hydrophobic groups in the interior of "micelles", due to the "devitrification" of the hydrophobic nucleus of micelle-like structures. It was shown that increasing the duration of vermicomposting leads to an increase in the relative content of the hydrophobic fraction of humic acids and in the cooperativity of the thermodynamic transition, which manifests itself in a jump of heat capacity, which probably results from the increase in the "micelle" size.  相似文献   

8.
It has been found by reversed-phase chromatography that humic acids obtained from vermicomposts of different duration of vermicomposting consist of a hydrophilic and a hydrophobic fractions, the hydrophobic fraction having a substantially lower content of charged, probably carboxylic, groups. A change in the sign of the temperature dependence of the heat capacity of dilute aqueous solutions of humic acids at ∼58°C has been found by differential scanning microcalorimetry, which indicates an increase in the hydration of hydrophobic groups. A jump-wise increase in heat capacity in the temperature range from 86 to 90°C was also found, which is perhaps due to hydration of hydrophobic groups in the interior of “micelles“, because of “devitrification” of the hydrophobic nucleus of micelle-like structures. It was shown that increasing the duration of vermicomposting leads to an increase in the relative content of the hydrophobic fraction of humic acids and in the cooperativity of the thermodynamic transition, which manifests itself as the jump of heat capacity, which probably results from the increase in the “micelle” size.  相似文献   

9.
A comparative molecular field analysis (CoMFA) model, employing standard steric and electrostatic fields, is able to predict the hydrophobic/hydrophilic balance, expressed as reverse-phase HPLC capacity factor, for a series of both naturally occurring and semi-synthetic bile acids. The very high values of cross-validated R(2) (Q(2)) demonstrate that the CoMFA method can give useful information on the hydrophobic balance of newly synthesized bile acids.  相似文献   

10.
Mechanisms of amino acid partitioning in cationic reversed micelles   总被引:1,自引:0,他引:1  
The aim of this work is to discuss the mechanisms involved in amino acidsolubilization in cationic reversed micelles. A simple mechanism was assumedin which the amino acid solubilization is mediated by an ion-exchangeprocess between the amino acid and the surfactant counter ion neglecting theeffect of the reversed micellar structure. Based on this mechanism a simplemodel to predict equilibrium was developed and applied to the solubilizationof amino acids with different structures. It was found that solubilizationof hydrophilic and slightly hydrophobic amino acids can be described by anion-exchange mechanism and the amino acid equilibrium concentration can bedetermined for different experimental conditions using this model. However,solubilization of hydrophobic amino acids can not be described by a simpleion-exchange model. In this case hydrophobic contributions play an importantrole in amino acid solubilization and must be considered in the overallsolubilization process. This hydrophobic contribution was evaluated bydetermination of an interfacial partition coefficient. The overall aminoacid extraction was determined using distribution coefficients of all theamino acid forms and considering their dependence on ionic strength.  相似文献   

11.
Amino acids composing an accessible surface of lysozyme and human serum albumin (HSA) globules were determined by the total tritium labelling method. A good correlation between our data on the distribution of the tritium label for the lysozyme molecule and X-ray data on the tertiary structure for this macromolecule was received. Lysozyme was used as a standard for determining the accessible surface of the globule albumin. It was shown that the accessible surface of the albumin globule is substantially more hydrophobic (average accessible surface area of hydrophobic amino acids is 130 A2 in HSA and 20 A2 in lysozyme) than in lysozyme. The HSA molecule is characterized by high values of: the accessible surface area, the ratio of extended area to the folded one, and the surface roughness index. These data indicate that the HSA molecule is less compactly packed than lysozyme.  相似文献   

12.
In this study, we describe an in silico method to design peptides that can be made of non-natural amino acids and elicit specific membrane-interacting properties. The originality of the method holds in the capacities developed to design peptides from any non-natural amino acids as easily as from natural ones, and to test the structure stability by an angular dynamics rather than the currently-used molecular dynamics. The goal of this study was to design a non-natural tilted peptide. Tilted peptides are short protein fragments able to destabilize lipid membranes and characterized by an asymmetric distribution of hydrophobic residues along their helix structure axis. The method is based on the random generation of peptides and their selection on three main criteria: mean hydrophobicity and the presence of at least one polar residue; tilted insertion at the level of the acyl chains of lipids of a membrane; and conformational stability in that hydrophobic phase. From 10,000,000 randomly-generated peptides, four met all the criteria. One was synthesized and tested for its lipid-destabilizing properties. Biophysical assays showed that the "de novo" peptide made of non-natural amino acids is helical either in solution or into lipids as tested by Fourier transform infrared spectroscopy and is able to induce liposome fusion. These results are in agreement with the calculations and validate the theoretical approach.  相似文献   

13.
VP26 is the smallest capsid protein and decorates the outer surface of the capsid shell of herpes simplex virus. It is located on the hexons at equimolar amounts with VP5. Its small size (112 amino acids) and high copy number make it an attractive molecule to use as a probe to investigate the complex pattern of capsid protein interactions. An in vitro capsid binding assay and a green fluorescent protein (GFP) localization assay were used to identify VP26 residues important for its interaction with capsids. To test for regions of VP26 that may be essential for binding to capsids, three small in-frame deletion mutations were generated in VP26, Delta18-25, Delta54-60, and Delta93-100. Their designations refer to the amino acids deleted by the mutation. The mutation at the C terminus of the molecule, which encompasses a region of highly conserved residues, abolished binding to the capsid and the localization of GFP to the nucleus in characteristic large puncta. Additional mutations revealed that a region of VP26 spanning from residue 50 to 112 was sufficient for the localization of the fused protein (VP26-GFP) to the nucleus and for it to bind to capsids. Using site-directed mutagenesis of conserved residues in VP26, two key residues for protein-protein interaction, F79 and G93, were identified as judged by the localization of GFP to nuclear puncta. When these mutations were analyzed in the capsid binding assay, they were also found to eliminate binding of VP26 to the capsid structure. Surprisingly, additional mutations that affected the ability of VP26 to bind to capsids in vitro were uncovered. Mutations at residues A58 and L64 resulted in a reduced ability of VP26 to bind to capsids. Mutation of the hydrophobic residues M78 and A80, which are adjacent to the hydrophobic residue F79, abolished VP26 capsid binding. In addition, the block of conserved amino acids in the carboxy end of the molecule had the most profound effect on the ability of VP26 to interact with capsids. Mutation of amino acid G93, L94, R95, R96, or T97 resulted in a greatly diminished ability of VP26 to bind capsids. Yet, all of these residues other than G93 were able to efficiently translocate or concentrate GFP into the nucleus, giving rise to the punctate fluorescence. Thus, the interaction of VP26 with the capsid appears to occur through at least two separate mechanisms. The initial interaction of VP26 and VP5 may occur in the cytoplasm or when VP5 is localized in the nucleus. Residues F79 and G93 are important for this bi-molecular interaction, resulting in the accumulation of VP26 in the nucleus in concentrated foci. Subsequent to this association, additional amino acids of VP26, including those in the C-terminal conserved domain, are important for interaction of VP26 with the three-dimensional capsid structure.  相似文献   

14.
The nucleotide frequencies in the second codon positions of genes are remarkably different for the coding regions that correspond to different secondary structures in the encoded proteins, namely, helix, beta-strand and aperiodic structures. Indeed, hydrophobic and hydrophilic amino acids are encoded by codons having U or A, respectively, in their second position. Moreover, the beta-strand structure is strongly hydrophobic, while aperiodic structures contain more hydrophilic amino acids. The relationship between nucleotide frequencies and protein secondary structures is associated not only with the physico-chemical properties of these structures but also with the organisation of the genetic code. In fact, this organisation seems to have evolved so as to preserve the secondary structures of proteins by preventing deleterious amino acid substitutions that could modify the physico-chemical properties required for an optimal structure.  相似文献   

15.
Structural insights into the equilibrium folding mechanism of the alpha subunit of tryptophan synthase (αTS) from Escherichia coli, a (βα)8 TIM barrel protein, were obtained with a pair of complementary nuclear magnetic resonance (NMR) spectroscopic techniques. The secondary structures of rare high-energy partially folded states were probed by native-state hydrogen-exchange NMR analysis of main-chain amide hydrogens. 2D heteronuclear single quantum coherence NMR analysis of several 15N-labeled nonpolar amino acids was used to probe the side chains involved in stabilizing a highly denatured intermediate that is devoid of secondary structure. The dynamic broadening of a subset of isoleucine and leucine side chains and the absence of protection against exchange showed that the highest energy folded state on the free-energy landscape is stabilized by a hydrophobic cluster lacking stable secondary structure. The core of this cluster, centered near the N-terminus of αTS, serves as a nucleus for the stabilization of what appears to be nonnative secondary structure in a marginally stable intermediate. The progressive decrease in protection against exchange from this nucleus toward both termini and from the N-termini to the C-termini of several β-strands is best described by an ensemble of weakly coupled conformers. Comparison with previous data strongly suggests that this ensemble corresponds to a marginally stable off-pathway intermediate that arises in the first few milliseconds of folding and persists under equilibrium conditions. A second, more stable intermediate, which has an intact β-barrel and a frayed α-helical shell, coexists with this marginally stable species. The conversion of the more stable intermediate to the native state of αTS entails the formation of a stable helical shell and completes the acquisition of the tertiary structure.  相似文献   

16.
The prediction of loop regions in the process of protein structure prediction by homology is still an unsolved problem. In an earlier publication, we could show that the correct placement of the amino acids serving as an anchor group to be connected by a loop fragment with a predicted geometry is a highly important step and an essential requirement within the process (Lessel and Schomburg, Proteins 1999; 37:56-64). In this article, we present an analysis of the quality of possible loop predictions with respect to gap length, fragment length, amino acid type, secondary structure, and solvent accessibility. For 550 insertions and 544 deletions, we test all possible positions for anchor groups with an inserted loop of a length between 3 and 12 amino acids. We could show that approximately 80% of the indel regions could be predicted within 1.5 A RMSD from a knowledge-based loop data base if criteria for the correct localization of anchor groups could be found and the loops can be sorted correctly. From our analysis, several conclusions regarding the optimal placement of anchor groups become obvious: (1) The correct placement of anchor groups is even more important for longer gap lengths, (2) medium length fragments (length 5-8) perform better than short or long ones, (3) the placement of anchor groups at hydrophobic amino acids gives a higher chance to include the best possible loop, (4) anchor groups within secondary structure elements, in particular beta-sheets are suitable, (5) amino acids with lower solvent accessibility are better anchor group. A preliminary test using a combination of the anchor group positioning criteria deduced from our analysis shows very promising results.  相似文献   

17.
Analogies in the sequences of two related zinc metallopeptidases, the bacterial thermolysin (316 amino acids) and the recently cloned neutral endopeptidase 24.11 ("enkephalinase", 749 amino acids), have been demonstrated by a hydrophobic cluster analysis method derived from the Lim theory. Two sequence alignments are proposed for the entire primary structure of thermolysin and the C-terminal part of endopeptidase 24.11. Except for an arginine residue, all the amino acids involved in the active site of thermolysin have been retrieved in both models of endopeptidase 24.11 within conserved clustered structures. The first model is characterized by a deletion of the Ca2+-binding coil present in thermolysin and the second by replacement of this coil by two alpha-helices. In both models an Arg residue can be located in the active site of the neutral endopeptidase.  相似文献   

18.
One of the major obstacles in non-viral gene transfer is the nuclear membrane. Attempts to improve the transport of DNA to the nucleus through the use of nuclear localization signals or importin-β have achieved limited success. It has been proposed that the nuclear pore complexes (NPCs) through which nucleocytoplasmic transport occurs are filled with a hydrophobic phase through which hydrophobic importins can dissolve. Therefore, considering the hydrophobic nature of the NPC channel, we evaluated whether a non-selective gating of nuclear pores by trans-cyclohexane-1,2-diol (TCHD), an amphipathic alcohol that reversibly collapses the permeability barrier of the NPCs, could be obtained and used as an alternative method to facilitate nuclear entry of plasmid DNA. Our data demonstrate for the first time that TCHD makes the nucleus permeable for both high molecular weight dextrans and plasmid DNA (pDNA) at non-toxic concentrations. Furthermore, in line with these observations, TCHD enhanced the transfection efficacy of both naked DNA and lipoplexes. In conclusion, based on the proposed structure of NPCs we succeeded to temporarily open the NPCs for macromolecules as large as pDNAs and demonstrated that this can significantly enhance non-viral gene delivery.  相似文献   

19.
20.
Baussand J  Deremble C  Carbone A 《Proteins》2007,67(3):695-708
Several studies on large and small families of proteins proved in a general manner that hydrophobic amino acids are globally conserved even if they are subjected to high rate substitution. Statistical analysis of amino acids evolution within blocks of hydrophobic amino acids detected in sequences suggests their usage as a basic structural pattern to align pairs of proteins of less than 25% sequence identity, with no need of knowing their 3D structure. The authors present a new global alignment method and an automatic tool for Proteins with HYdrophobic Blocks ALignment (PHYBAL) based on the combinatorics of overlapping hydrophobic blocks. Two substitution matrices modeling a different selective pressure inside and outside hydrophobic blocks are constructed, the Inside Hydrophobic Blocks Matrix and the Outside Hydrophobic Blocks Matrix, and a 4D space of gap values is explored. PHYBAL performance is evaluated against Needleman and Wunsch algorithm run with Blosum 30, Blosum 45, Blosum 62, Gonnet, HSDM, PAM250, Johnson and Remote Homo matrices. PHYBAL behavior is analyzed on eight randomly selected pairs of proteins of >30% sequence identity that cover a large spectrum of structural properties. It is also validated on two large datasets, the 127 pairs of the Domingues dataset with >30% sequence identity, and 181 pairs issued from BAliBASE 2.0 and ranked by percentage of identity from 7 to 25%. Results confirm the importance of considering substitution matrices modeling hydrophobic contexts and a 4D space of gap values in aligning distantly related proteins. Two new notions of local and global stability are defined to assess the robustness of an alignment algorithm and the accuracy of PHYBAL. A new notion, the SAD-coefficient, to assess the difficulty of structural alignment is also introduced. PHYBAL has been compared with Hydrophobic Cluster Analysis and HMMSUM methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号