首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bioavailability and action of the insulin-like growth factors (IGFs) are determined by specific IGF-binding proteins (IGFBP) to which they are complexed. Complementary DNA clones have been isolated that encode three related IGFBPs: human IGFBP-1 (hIGFBP-1), human IGFBP-3 (hIGFBP-3), and rat IGFBP-2 (rIGFBP-2). IGFBP-1 and IGFBP-3 are regulated differently in human plasma, suggesting that they have different functions. In order to study the molecular basis of the regulation of the different IGFBPs, we have identified a panel of rat cell lines that express a single predominant binding protein and developed an assay strategy to distinguish the different binding proteins. Proteins in conditioned medium were examined by ligand blotting, and by immunoprecipitation and immunoblotting using antibodies to rIGFBP-2 and hIGFBP-1; RNAs were hybridized to cDNA probes for rIGFBP-2 and hIGFBP-1. 1) C6 glial cells and B104 neuroblastoma cells express an approximately 40 kilodalton (kDa) glycosylated binding protein that most likely represents rIGFBP-3, the binding subunit of the 150 kDa IGF: binding protein complex in adult rat serum. The C6 and B104 binding proteins do not react with antibodies to rIGFBP-2, and RNAs from C6 and B104 cells do not hybridize to cDNA probes for rIGFBP-2 or hIGFBP-1. 2) BRL-3A, Clone 9, and TRL 12-15 cell lines derived from normal rat liver express rIGFBP-2, a 30 kDa nonglycosylated IGF-binding protein that is recognized by antibodies to rIGFBP-2 but not by antibodies to hIGFBP-1. RNAs from these cells hybridize to a rIGFBP-2 cDNA probe, but not to a hIGFBP-1 probe. 3) H35 rat hepatoma cells express a 30 kDa nonglycosylated IGFBP that is presumptively identified as rIGFBP-1. It does not react with antibodies to rIGFBP-2, but is recognized by polyclonal and monoclonal antibodies to hIGFBP-1. RNA from H35 cells hybridizes to a hIGFBP-1 cDNA probe, but not to a rIGFBP-2 probe. Expression of rIGFBP-1 by the H35 cell line has enabled us to establish and validate specific assays for this protein that allow us to study its regulation in intact rats. Identification of a panel of rat cell lines expressing specific IGFBPs should be useful in elucidating the molecular mechanisms of IGFBP regulation.  相似文献   

2.
3.
4.
Insulin-like growth factor binding proteins (IGFBPs) are secreted by several cell types and can modify IGF actions. Mandin-Darby Bovine Kidney (MDBK) cells have been shown to secrete a 34,000 Da form of IGF binding protein whose N-terminal sequence is similar to a form of IGFBP purified from rat BRL-3A cells that has recently been named IGFBP-2. These studies report the complete amino acid sequence of bovine IGFBP-2 and compare its functional properties with human IGFBP-1. The protein is 81% identical to rat IGFBP-2. When compared with both rat IGFBP-2 and human IGFBP-1, the positions of all 18 cysteine residues are conserved. Similarly an RGD sequence is present near the carboxyl terminus in both proteins. IGFBP-2 has a higher affinity for IGF-II than for IGF-I and its affinity for both forms of IGF is greater than for human IGFBP-1. Like IGFBP-1 the protein can enhance the DNA synthesis response of porcine aortic smooth muscle cells to IGF-I; however, IGFBP-2 was much less potent. The maximum potentiation of the IGF-mediated mitogenic response that could be achieved was approximately 42% that of IGFBP-1. This potentiation is dependent upon a factor contained in platelet poor plasma and if this factor is omitted from the incubation medium, IGFBP-2 inhibits DNA synthesis. The purification of IGFBP-2 will allow more detailed comparisons to be made between it and other forms of IGFBPs in physiologic test systems.  相似文献   

5.
The liver is a major source of circulating insulin-like growth factor I (IGF-I), and it also synthesizes several classes of IGF binding proteins (IGFBPs). Synthesis of IGF-I and IGFBPs is regulated by hormones, growth factors, and cytokines. They are nutritionally regulated and expressed in developmentally specific patterns. To gain insight into cellular regulatory mechanisms that determine hepatic synthesis of IGF-I and IGFBPs and to identify potential target cells for IGF-I within the liver, we studied the cellular sites of synthesis of IGF-I, IGF receptor, growth hormone (GH) receptor, and IGFBPs in freshly isolated rat hepatocytes, endothelial cells, and Kupffer cells. We also localized cellular sites of IGFBP synthesis by in situ hybridization histochemistry. Western ligand and immunoblot analyses were used to determine IGFBP secretion by isolated cells. Two IGF-I mRNA subtypes with different 5' ends (class 1 and class 2) were detected in all isolated liver cell preparations. Type 1 IGF receptor mRNA was detected in endothelial cells, indicating that these cells are a local target for IGF actions in liver. GH receptor was expressed in all cell preparations, consistent with GH regulation of IGF-I and IGFBP synthesis in multiple liver cell types. The IGFBPs expressed striking cell-specific expression. IGFBP-1 was synthesized only in hepatocytes, and IGFBP-3 was expressed in Kupffer and endothelial cells. IGFBP-4 was expressed at high levels in hepatocytes and at low levels in Kupffer and endothelial cells. Cell-specific expression of distinct IGFBPs in the liver provides the potential for cell-specific regulation of hepatic and endocrine actions of IGF-I.  相似文献   

6.
Insulin-like growth factor (IGF)-I and IGF-II are expressed at biologically effective levels by bone cells. Their stability and activity are modulated by coexpression of IGF binding proteins (IGFBPs). Secreted IGFBPs may partition to soluble, cell-associated, and matrix-bound compartments. Extracellular localization may sequester, store, or present IGFs to appropriate receptors. Of the six IGFBPs known, rat osteoblasts synthesize all but IGFBP-1. Of these, IGFBP-3, -4, and -5 mRNAs are induced by an increase in cAMP. Little is known about extracellular IGFBP localization in bone and nothing about IGFBP expression by nonosteoblastic periosteal bone cells. We compared basal IGFBP expression in periosteal and osteoblast bone cell cultures and assessed the effects of changes in cAMP-dependent protein kinase A or protein kinase C. Basal IGFBP gene expression differed principally in that more IGFBP-2 and -5 occurred in osteoblast cultures, and more IGFBP-3 and -6 occurred in periosteal cultures. An increase in cAMP enhanced IGFBP-3, -4, and -5 mRNA and accordingly increased soluble IGFBP-3, -4, and -5 and matrix-bound IGFBP-3 and -5 in both bone cell populations. In contrast, protein kinase C activators suppressed IGFBP-5 mRNA, and its basal protein levels remained very low. We also detected low Mr bands reactive with antisera to IGFBP-2, -3, and -5, suggesting proteolytic processing or degradation. Our studies reveal that various bone cell populations secrete and bind IGFBPs in selective ways. Importantly, inhibitory IGFBP-4 does not significantly accumulate in cell-associated compartments, even though its secretion is enhanced by cAMP. Because IGFBPs bind IGFs less tightly in cell-bound compartments, they may prolong anabolic effects by agents that increase bone cell cAMP. J. Cell. Biochem. 71:351–362, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The insulin-like growth factor binding protein (IGFBP) family comprises six structurally distinct, but highly homologous proteins. They have been identified in serum and other biological fluids, tissue extracts, and cell culture media. We have recently cloned cDNAs encoding human IGFBP-4, -5, and -6 and have now expressed these BPs in yeast as ubiquitin (Ub)-IGFBP fusion proteins. Western ligand blotting with 125I-IGF II under nonreducing conditions of recombinant human (rh) IGFBP-containing yeast lysates revealed specific binding bands for IGFBP-4, -5, and -6 at apparent molecular masses of 24-26, 30-32, and 24-26 kDa, respectively, indicating processing of the fusion proteins. High-performance liquid chromatography-purified rhIGFBPs had virually the same amino acid composition, amino acid number, and NH2-terminal sequences as the native BPs. Except for the affinity of rhIGFBP-6 for IGF I (Ka = 8.5 x 10(8) M-1), the affinity constants of the three IGFBPs for IGF I and II lie between 1.7 and 3.3 x 10(10) M-1, i.e. 25-100 times higher than the IGF I and II affinities of the type I IGF receptor. When present in excess, rhIGFBP-4, -5, and -6 inhibited IGF I- and II-stimulated DNA and glycogen synthesis in human osteoblastic cells, but rhIGFBP-6 had only a weak inhibitory effect on IGF I in agreement with its relatively lower IGF I affinity constant. The results of this study show that the primary effect of the three rhIGFBPs is the attenuation of IGF activity and suggest that IGFBPs contribute to the control of IGF-mediated cell growth and metabolism.  相似文献   

8.
The insulin-like growth factor (IGF)-binding proteins (IGFBPs) are a family of six homologous proteins with high binding affinity for IGF-I and IGF-II. Information from NMR and mutagenesis studies is advancing knowledge of the key residues involved in these interactions. IGF binding may be modulated by IGFBP modifications, such as phosphorylation and proteolysis, and by cell or matrix association of the IGFBPs. All six IGFBPs have been shown to inhibit IGF action, but stimulatory effects have also been established for IGFBP-1, -3, and -5. These generally involve a decrease in IGFBP affinity and may require cell association of the IGFBP, but precise mechanisms are unknown. The same three IGFBPs have well established effects that are independent of type I IGF receptor signaling. IGFBP-1 exerts these effects by signaling through alpha(5)beta(1)-integrin, whereas IGFBP-3 and -5 may have specific cell-surface receptors with serine kinase activity. The regulation of cell sensitivity to inhibitory IGFBP signaling may play a role in the growth control of malignant cells.  相似文献   

9.
10.
We have isolated four insulin-like growth factor binding proteins (IGFBPs) from adult human serum by insulin-like growth factor (IGF) I affinity chromatography and high performance liquid chromatography. A 36-kDa binding protein (BP), not digestible with N-glycanase, is increased in patients with extrapancreatic tumor hypoglycemia and during IGF I administration in healthy adults. Its 38 NH2-terminal amino acids are identical to those of an IGFBP sequence derived from a human cDNA that cross-hybridizes with the rat IGFBP-2 cDNA. With probes encoding a NH2-terminal, COOH-terminal, and a middle region of this protein we have obtained three cDNA clones from a Hep G2 cDNA library; one encodes human IGFBP-2, and the other two presumably represent unspliced heteronuclear and alternatively spliced mRNA, respectively. A 28-30-kDa IGFBP represents a novel BP species in human serum. Its 30 NH2-terminal amino acids are not homologous to IGFBP-1, -2, or -3. It is not digestible with N-glycanase and does not bind 125I-IGF I. The NH2-terminal sequences of a 42/45- and a 31-kDa IGFBP are identical to that of human IGFBP-3. The 42/45-kDa proteins are two glycosylation variants of BP-3. The 31-kDa protein presumably is a degradation product of BP-3 that lacks the COOH terminus. It is likely that the different IGFBPs modulate auto-/paracrine and endocrine effects of IGFs on growth and metabolism in a different and specific manner.  相似文献   

11.
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) either inhibit or enhance IGF-stimulated cellular effects. While inhibition occurs by sequestration of IGF from cell-surface receptors, the exact mechanism of IGF-enhancement remains undefined. Human osteoblast-like bone cells in culture secrete several IGF-binding proteins, one of which we have previously identified as IGFBP-5. In this study we purified a 23-kDa IGFBP-5 from cultures of human osteoblast-like cells using ligand affinity chromatography and reversed-phase high performance liquid chromatography and tested its bioactivity in serum-free cultures of normal mouse osteoblast-like cells. Binding studies with radioiodinated IGF showed similar and relatively low affinities for IGF-I and IGF-II consistent with a carboxyl truncated IGF-binding protein. Mitogenic assays demonstrated that the binding protein, when coincubated with IGF-I or -II, enhanced mitogenesis. This enhancement was unique from other binding proteins in not requiring a preincubation period or serum co-factors. Furthermore, the osteoblast-derived IGFBP-5 stimulated mitogenesis in the absence of exogenous or endogenous IGF. Using radioiodinated IGFBP-5 we found that the binding protein could associate with the osteoblast surface, an effect which did not require IGF nor an interaction with IGF receptors. We suggest that osteoblast-derived IGFBP-5 may stimulate osteoblast mitogenesis in at least two ways, by association with IGF and by a second pathway that is independent of IGF receptor activation.  相似文献   

12.
The insulin-like growth factor type 1 receptor (IGF 1R) mediates the acute metabolic effects of IGF I as well as IGF I-stimulated cell proliferation and protection from apoptosis. IGF binding proteins (IGFBPs) can modulate these responses. We, therefore, investigated whether intrinsic IGFBPs interfere with IGF I-induced regulation of IGF 1R expression and with the biological response to IGF I in two human tumor cell lines, the non-small-cell lung cancer cell line A549 and the osteoblastic osteosarcoma cell line Saos-2/B-10. We compared the growth rates, IGFBP production, IGF I binding characteristics, IGF 1R protein and mRNA levels, and the acute IGF I response (stimulation of glycogen synthesis) after pretreatment of the cells in serum-free medium with or without added IGF I or medium supplemented with 5% fetal calf serum (FCS). In contrast to A549 cells, which produce IGF I and significant amounts of IGFBPs, survival and proliferation of Saos-2/B-10 cells, which do not produce IGF I or significant amounts of IGFBPs, depended on the addition of exogenous IGF I. IGF I increased the concentration of IGFBP-2 and -3 and decreased the concentration of IGFBP-4 in the medium of A549 cells. As compared to FCS, IGF I pretreatment in both cell lines decreased the number of specific IGF I binding sites, down-regulated total and membrane IGF 1R protein, and largely reduced or abolished the acute IGF I response without affecting IGF 1R mRNA levels. The data suggest that the IGF 1R protein of the two cell lines is translationally and/or posttranslationally down-regulated by its ligand in the presence and in the absence of locally produced IGFBPs and that the cell lines have retained this negative feedback to counteract IGF I stimulation.  相似文献   

13.
Insulin-like growth factor binding proteins (IGFBPs) are found both associated with cells and in extracellular fluids. Cell-associated IGFBPs increase [125I]-IGF binding to cell monolayers, whereas extracellular (soluble, released) IGFBPs decrease binding. In the current study, we show that either IGFBP-3 or IGFBP-5 are the major forms of IGFBP released from monolayers of human GM10 fibroblasts, T98G glioblastoma cells and forskolin-treated bovine MDBK cells. IGFBPs represent the most abundant [125I]-IGF-I binding site on GM10 and T98G cell monolayers, but 4-17% of the total cell-associated IGFBPs are released from the cell monolayer at 8°C during their quantification. Most of the IGFBPs (> 70%) are released from MDBK cells. Quantitative estimates of [125I]-IGF binding to the cell monolayers are altered because of the ability of the released IGFBPs to reduce the amount of radiolabeled ligand that is available to bind to the cell surface. Lanthanum (La3+) depresses IGFBP release from all three cell types (> 80% for GM10 and T98G cells and > 65% for MDBK cells). The effect was cation specific, noted with La3+ or Zn2+ but not with either Mn2+, Sr2+ or Se3+. The effect was also IGFBP specific; La3+ markedly depressed the release of IGFBP-3 and IGFBP-5, but had less of an effect on IGFBP-2 and IGFBP-4. Concomitant with a decrease in IGFBP-3 and IGFBP-5 release, La3+ caused an increase in [125I]-IGF-I binding to cell-associated IGFBPs and type I IGF receptors. The released soluble IGFBPs have a three- to 20-fold greater affinity (Ka) for [125I]-IGF-I compared to cell-associated IGFBPs. La3+ did not alter the affinity constants of cell-associated IGFBPs. In summary, we have identified a means to prevent loss of IGFBPs from cell monolayers during binding assays. This procedure will be useful in accurately quantifying the levels of IGFBPs on cell monolayers and in determining the role of cell-associated IGFBPs in controlling IGF activity. Retention of cell-associated low affinity IGFBPs may be important in controlling the size of the pericellular IGF pool and in regulating IGF-I access to the type I IGF receptor. J. Cell. Biochem. 66:256-267. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Insulin-like growth factors (IGF), IGF receptors and IGF binding proteins (IGFBPs) play an important role in cell growth and differentiation. The liver is the major source of IGF-1 and at least two IGFBPs (IGFBP-1 and IGFBP-3). IGFBPs most often serve to attenuate the effects of IGF at the receptor level and thereby limit IGF-induced cell growth and differentiation. Although changes in IGFBP expression have been described during controlled liver growth such as hepatic regeneration following partial hepatectomy, there is limited knowledge of IGFBPs gene expression in uncontrolled growth or hepatocellular carcinoma. In the present study, we employed Northern blotting techniques to document the expression of IGFBP-1, 3 and 4 in normal human livers, cirrhotic and hepatocellular carcinoma tissues. The results revealed no differences in IGFBP-1, 3 and 4 mRNA levels between normal and cirrhotic tissues. However, the expression of all three IGFBPs mRNA were significantly down regulated in hepatocellular carcinoma tissues. These findings are in keeping with IGFBPs playing an important inhibitory role in the development and/or growth of hepatocellular carcinoma in humans.  相似文献   

15.
Insulin-like growth factor-1 (IGF1) has been reported to stimulate hair elongation and to facilitate maintenance of the hair follicle in anagen phase. However, little is known about IGF1 signaling in the hair follicle. In this study we investigate the effects of IGF1, glucocorticoids, and retinoids on dermal papilla (DP) cell production of insulin-like growth factor binding proteins (IGFBPs). IGFBPs comprise a family of IGF binding proteins that are produced and released by most cell types. They bind to IGFs to either enhance or inhibit IGF activity. In the present report we identify IGFBP-3 as being produced and released by cultured human dermal papilla (DP) cells. IGFBP-3 levels are increased fivefold by retinoic acid, eightfold by dexamethasone, and tenfold by IGF1. DP cells are known to produce IGF1, and so the observed stimulation of DP cell IGFBP-3 production by IGF1 is consistent with the idea that DP cells possess the IGF transmembrane receptor kinase and are autoregulated by IGFs. The level of another IGFBP, tentatively identified as IGFBP-2, is, in contrast, not regulated by these agents. IGFBP-3 has been shown to inhibit the activity of IGFs in a variety of systems. Our results are consistent with a model in which retinoids and glucocorticoids inhibit IGF action on DP cells and surrounding matrix cells by stimulating increased DP cell production of IGFBP-3. The IGFBP-3, in turn, forms a complex with free IGF1 to reduce the concentration of IGF1 available to stimulate hair elongation and maintenance of anagen phase. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Insulin-like growth factor binding proteins (IGFBPs) are key regulators of insulin-like growth factor (IGF) mediated signal transduction and thereby can profoundly influence cellular phenotypes and cell fate. Whereas IGFBPs are extracellular proteins, intracellular activities were described for several IGFBP family members, such as IGFBP-3, which can be reinternalized by endocytosis and reaches the nucleus through routes that remain to be fully established. Within the family of IGFBPs, IGFBP-6 is unique for its specific binding to IGF-II. IGFBP-6 was described to possess additional IGF-independent activities, which have in part been attributed to its translocation to the nucleus; however, cellular uptake of IGFBP-6 was not described. To further explore IGFBP-6 functions, we developed a new method for the purification of native human IGFBP-6 from cell culture supernatants, involving a four-step affinity purification procedure, which yields highly enriched IGFBP-6. Whereas protein purified in this way retained the capacity to interact with IGF-II and modulate IGF-dependent signal transduction, our data suggest that, unlike IGFBP-3, human IGFBP-6 is not readily internalized by human tumor cells. To summarize, this work describes a novel and efficient method for the purification of native human insulin-like growth factor binding protein 6 (IGFBP-6) from human cell culture supernatants, applying a four-step chromatography procedure. Intactness of purified IGFBP-6 was confirmed by IGF ligand Western blot and ability to modulate IGF-dependent signal transduction. Cellular uptake studies were performed to further characterize the purified protein, showing no short-term uptake of IGFBP-6, in contrast to IGFBP-3.  相似文献   

17.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Insulin-like growth factor (IGF) signaling is critical for osteoblast development and IGF binding protein (IGFBP)-4 is one of the principle IGFBPs expressed by osteoblasts. Release of bound IGF via proteolytic degradation of IGFBP-4 is likely to be critical for osteoblast development. We have investigated whether IGF-sensitive, IGFBP-4 degradation in mouse MC3T3-E1 osteoblasts is due to the metzincin pregnancy-associated plasma protein (PAPP)-A. Degradation of IGFBP-4 by PAPP-A or MC3T3-E1 conditioned medium was enhanced by IGF-II but inhibited by mutation of basic residues at or near the PAPP-A cleavage site in IGFBP-4. Furthermore, immunodepletion of PAPP-A from MC3T3-E1 conditioned medium abolished IGFBP-4 degradation. We also found that PAPP-A messenger RNA was expressed throughout differentiation of MC3T3-E1 cells. These results demonstrate for the first time that PAPP-A is the IGFBP-4 protease in MC3T3-E1 cells, a widely used model for osteoblast development, and that PAPP-A may regulate IGF release throughout osteoblast differentiation.  相似文献   

19.
The ovarian insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system operates to permit maximal stimulation of steroidogenesis in the dominant follicle. In atretic follicles, the predominant IGFBPs are IGFBP-2 and IGFBP-4, which appear to be selectively cleaved in healthy follicles. We have recently demonstrated potent inhibition by IGFBP-4 of both theca and granulosa cell steroid production. The degree to which the inhibition occurred suggested that it was greater than might be expected by sequestration of IGF alone. Our study was designed to test this idea. Granulosa cells were harvested from follicles dissected intact from patients undergoing total abdominal hysterectomy and bilateral salpingoophorectomy. Granulosa cells were incubated with or without gonadotropins and IGFBP-4 in the presence or absence of either the IGF type I receptor blocker alphaIR3 or excess IGFBP-3 to remove the effects of endogenous IGF action. Steroid accumulation in the medium was assessed. IGFBP-4 continued to exert potent inhibitory effects when the action of endogenous IGF was removed from the system, demonstrating that its actions are independent of IGF binding. There was no effect on cell metabolism, and the effects on steroidogenesis were reversible after IGFBP-4 removal from the culture medium. No similar effects were seen with IGFBP-2. These reasults are the first evidence of IGF-independent IGFBP-4 actions and the first evidence of IGF-independent actions of any IGFBPs in the ovary.  相似文献   

20.
The insulin-like growth factor-binding proteins (IGFBPs) comprise a family of six related peptides that interact with high affinity with IGFs. IGFBPs compete with IGF receptors for IGF binding, and as a consequence of this competition they can affect cell growth. In addition, IGF-independent regulatory mechanisms of IGFBPs have been described. Despite their common property to interact with IGFs every IGFBP is expressed in a tightly regulated time- and tissue-specific manner suggesting that each protein may have its own distinct functions. Several transgenic mouse models overexpressing IGFBP-1, -2, -3, or -4 were developed in the past few years. Brain abnormalities were a common feature of IGFBP-1 transgenic models. Individual strains showed alterations in glucose homeostasis, reproductive performance, and a reduction of somatic growth as the most prominent phenotypes. The latter was also the main effect observed in IGFBP-2 transgenic mice. The overexpression of IGFBP-3 under the control of an ubiquitous promoter resulted in selective organomegaly, whereas mammary gland-targeted expression of this protein caused an altered involution after pregnancy in this organ. Tissue-specific overexpression of IGFBP-4 resulted in hypoplasia and reduced weight of smooth muscle-rich tissues such as bladder, aorta, and stomach. This review summarizes the current knowledge about the actions of IGFBPs in vivo based on the presently established transgenic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号