首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dactylis glomerata was grown hydroponically in a controlled environment at ambient (360 μl l−1) or elevated (680 μl l−1) CO2 and four concentrations of nitrogen (0.15, 0.6, 1.5 and 6.0 m M NO3), to test the hypothesis that reduction of photosynthetic capacity at elevated [CO2] is dependent on N availability and mediated by a build-up of non-structural carbohydrates. Photosynthetic capacity of the youngest fully expanded leaf (leaf 5, 2 days after full expansion) was reduced in CO2-enriched plants at low, but not high N supply and so the stimulation of net photosynthesis by CO2 enhancement was less at low than at high N supply. CO2 enrichment resulted in a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content on a leaf area basis at 0.6 and 1.5 m M NO3, but not at 0.15 and 6.0 m M NO3, and had no effect on the total N content of the leaf on an area basis. However, decreases in Rubisco content could be primarily accounted for by a decrease in total N content of leaves, independent of [CO2]. A doubling of the Rubisco content by increasing the N supply beyond 0.6 m M had only a marginal effect on the maximum carboxylation velocity in vivo, suggesting that the fraction of inactive Rubisco increased with increasing N supply. Although CO2-enriched plants accumulated more non-structural carbohydrates in the leaf, the reduction of photosynthetic capacity at low N supply was not mediated simply by a build-up of carbohydrates. In D . glomerata , the photosynthetic capacity was mainly determined by the total N content of the leaf.  相似文献   

2.
The long-term response of Arabidopsis thaliana to increasing CO2 was evaluated in plants grown in 800 μl l−1 CO2 from sowing and maintained, in hydroponics, on three nitrogen supplies: "low,""medium" and "high." The global response to high CO2 and N-supply was evaluated by measuring growth parameters in parallel with photosynthetic activity, leaf carbohydrates, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) messenger RNA and protein, stomatal conductance (gs) and density. CO2 enrichment was found to stimulate biomass production, whatever the N-supply. This stimulation was transient on low N-supply and persisted throughout the whole vegetative growth only in high N-supply. Acclimation on low N–high CO2 was not associated with carbohydrate accumulation or with a strong reduction in Rubisco amount or activity. At high N-supply, growth stimulation by high CO2 was mainly because of the acceleration of leaf production and expansion while other parameters such as specific leaf area, root/shoot ratio and gs appeared to be correlated with total leaf area. Our results thus suggest that, in strictly controlled and stable growing conditions, acclimation of A. thaliana to long-term CO2 enrichment is mostly controlled by growth rate adjustment.  相似文献   

3.
1. We report changes in photosynthetic capacity of leaves developed in varying photon flux density (PFD), nitrogen supply and CO2 concentration. We determined the relative effect of these environmental factors on photosynthetic capacity per unit leaf volume as well as the volume of tissue per unit leaf area. We calculated resource-use efficiencies from the photosynthetic capacities and measurements of leaf dry mass, carbohydrates and nitrogen content.
2. There were clear differences between the mechanisms of photosynthetic acclimation to PFD, nitrogen supply and CO2. PFD primarily affected volume of tissue per unit area whereas nitrogen supply primarily affected photosynthetic capacity per unit volume. CO2 concentration affected both of these parameters and interacted strongly with the PFD and nitrogen treatments.
3. Photosynthetic capacity per unit carbon invested in leaves increased in the low PFD, high nitrogen and low CO2 treatments. Photosynthetic capacity per unit nitrogen was significantly affected only by nitrogen supply.
4. The responses to low PFD and low nitrogen appear to function to increase the efficiency of utilization of the limiting resource. However, the responses to elevated CO2 in the high PFD and high nitrogen treatments suggest that high CO2 can result in a situation where growth is not limited by either carbon or nitrogen supply. Limitation of growth at elevated CO2 appears to result from internal plant factors that limit utilization of carbohydrates at sinks and/or transport of carbohydrates to sinks.  相似文献   

4.
Single leaf photosynthetic rates and various leaf components of potato ( Solanum tuberosum L.) were studied 1–3 days after reciprocally transferring plants between the ambient and elevated growth CO2 treatments. Plants were raised from individual tuber sections in controlled environment chambers at either ambient (36 Pa) or elevated (72 Pa) CO2. One half of the plants in each growth CO2 treatment were transferred to the opposite CO2 treatment 34 days after sowing (DAS). Net photosynthesis (Pn) rates and various leaf components were then measured 34, 35 and 37 DAS at both 36 and 72 Pa CO2. Three-day means of single leaf Pn rates, leaf starch, glucose, initial and total Rubisco activity, Rubisco protein, chlorophyll ( a + b ), chlorophyll ( a/b ), α -amino N, and nitrate levels differed significantly in the continuous ambient and elevated CO2 treatments. Acclimation of single leaf Pn rates was partially to completely reversed 3 days after elevated CO2-grown plants were shifted to ambient CO2, whereas there was little evidence of photosynthetic acclimation 3 days after ambient CO2-grown plants were shifted to elevated CO2. In a four-way comparison of the 36, 72, 36 to 72 (shifted up) and 72 to 36 (shifted down) Pa CO2 treatments 37 DAS, leaf starch, soluble carbohydrates, Rubisco protein and nitrate were the only photosynthetic factors that differed significantly. Simple and multiple regression analyses suggested that negative changes of Pn in response to growth CO2 treatment were most closely correlated with increased leaf starch levels.  相似文献   

5.
The reduction of photosynthetic capacity in many plants grown at elevated CO2 is thought to result from a feedback effect of leaf carbohydrates on gene expression. Carbohydrate feedback at elevated CO2 could result from limitations on carbohydrate utilization at many different points, for example export of triose phosphates from the chloroplast, sucrose synthesis and phloem loading, transport in the phloem, unloading of the phloem at the sinks, or utilization for growth of sinks. To determine the relative importance of leaf versus whole plant level limitations on carbohydrate utilization at elevated CO2, and the possible effects on the regulation of photosynthetic capacity, we constructed a treatment system in which we could expose single, attached, soybean leaflets to CO2 concentrations different from those experienced by the rest of the plant. The single leaflet treatments had dramatic effects on the carbohydrate contents of the treated leaflets. However, photosynthetic capacity and rubisco content were unaffected by the individual leaflet treatment and instead were related to the whole plant CO2 environment, despite the fact that the CO2 environment around the rest of the plant had no significant affect on the total non-structural carbohydrate (TNC) contents of the treated leaflets. These results necessitate a re-evaluation of the response mechanisms to CO2 as well as some of the methods used to test these responses. We propose mechanisms by which sink strength could influence leaf physiology independently of changes in carbohydrate accumulation.  相似文献   

6.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

7.
Chlamydomonas acidophila Negoro is a green algal species abundant in acidic waters (pH 2–3.5), in which inorganic carbon is present only as CO2. Previous studies have shown that aeration with CO2 increased its maximum growth rate, suggesting CO2 limitation under natural conditions. To unravel the underlying physiological mechanisms at high CO2 conditions that enables increased growth, several physiological characteristics from high- and low-CO2-acclimated cells were studied: maximum quantum yield, photosynthetic O2 evolution (Pmax), affinity constant for CO2 by photosynthesis (K0.5,p), a CO2-concentrating mechanism (CCM), cellular Rubisco content and the affinity constant of Rubisco for CO2 (K0.5,r). The results show that at high CO2 concentrations, C. acidophila had a higher K0.5,p, Pmax, maximum quantum yield, switched off its CCM and had a lower Rubisco content than at low CO2 conditions. In contrast, the K0.5,r was comparable under high and low CO2 conditions. It is calculated that the higher Pmax can already explain the increased growth rate in a high CO2 environment. From an ecophysiological point of view, the increased maximum growth rate at high CO2 will likely not be realised in the field because of other population regulating factors and should be seen as an acclimation to CO2 and not as proof for a CO2 limitation.  相似文献   

8.
1. The photosynthetic response to elevated CO2 and nutrient stress was investigated in Agrostis capillaris, Lolium perenne and Trifolium repens grown in an open-top chamber facility for 2 years under two nutrient regimes. Acclimation was evaluated by measuring the response of light-saturated photosynthesis to changes in the substomatal CO2 concentration.
2. Growth at elevated CO2 resulted in reductions in apparent Rubisco activity in vivo in all three species, which were associated with reductions of total leaf nitrogen content on a unit area basis for A. capillaris and L. perenne . Despite this acclimation, photosynthesis was significantly higher at elevated CO2 for T. repens and A. capillaris , the latter exhibiting the greatest increase of carbon uptake at the lowest nutrient supply.
3. The photosynthetic nitrogen-use efficiency (the rate of carbon assimilation per unit leaf nitrogen) increased at elevated CO2, not purely owing to higher values of photosynthesis at elevated CO2, but also as a result of lower leaf nitrogen contents.
4. Contrary to most previous studies, this investigation indicates that elevated CO2 can stimulate photosynthesis under a severely limited nutrient supply. Changes in photosynthetic nitrogen-use efficiency may be a critical determinant of competition within low nutrient ecosystems and low input agricultural systems.  相似文献   

9.
Plants of Nardus stricta growing near a cold, naturally emitting CO2 spring in Iceland were used to investigate the long-term (> 100 years) effects of elevated [CO2] on photosynthesis, biochemistry, growth and phenology in a northern grassland ecosystem. Comparisons were made between plants growing in an atmosphere naturally enriched with CO2 (≈ 790 μ mol mol–1) near the CO2 spring and plants of the same species growing in adjacent areas exposed to ambient CO2 concentrations (≈360 μ mol mol–1). Nardus stricta growing near the spring exhibited earlier senescence and reductions in photosynthetic capacity (≈25%), Rubisco content (≈26%), Rubisco activity (≈40%), Rubisco activation state (≈23%), chlorophyll content (≈33%) and leaf area index (≈22%) compared with plants growing away from the spring. The potential positive effects of elevated [CO2] on grassland ecosystems in Iceland are likely to be reduced by strong down-regulation in the photosynthetic apparatus of the abundant N. stricta species.  相似文献   

10.
Rice ( Oryza sativa L. cv. IR72) was grown at three different CO2 concentrations (ambient, ambient + 200 μmol mol−1, ambient + 300 μmol mol−1) at two different growth temperatures (ambient, ambient + 4°C) from sowing to maturity to determine longterm photosynthetic acclimation to elevated CO2 with and without increasing temperature. Single leaves of rice showed a cooperative enhancement of photosynthetic rate with elevated CO2 and temperature during tillering, relative to the elevated CO2 condition alone. However, after flowering, the degree of photosynthetic stimulation by elevated CO2 was reduced for the ambient + 4°C treatment. This increasing insensitivity to CO2 appeared to be accompanied by a reduction in ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity and/or concentration as evidenced by the reduction in the assimilation (A) to internal CO2 (C1) response curve. The reproductive response (e.g. percent filled grains, panicle weight) was reduced at the higher growth temperature and presumably reflects a greater increase in floral sterility. Results indicate that while CO2 and temperature could act synergistically at the biochemical level, the direct effect of temperature on floral development with a subsequent reduction in carbon utilization may change sink strength so as to limit photosynthetic stimulation by elevated CO2 concentration.  相似文献   

11.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

12.
Artificial chalk grassland swards were exposed to either ambient air or air enriched to 600 μ mol mol–1 CO2, using free-air CO2 enrichment technology, and subjected to an 8 week simulated grazing regime. After 14 months of treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco) activity ( V c,max) and electron transport mediated ribulose-1,5-bisphosphate (RuBP) regeneration capacity ( J max), estimated from leaf gas exchange, were significantly lower in fully expanded leaves of Anthyllis vulneraria L. (a legume) and Sanguisorba minor Scop. grown in elevated CO2. After a change in source:sink balance brought about by defoliation, photosynthetic capacity was fully restored in A. vulneraria and S. minor, but acclimation continued in the grass Bromopsis erecta (Hudson) Fourr. Changes in net photosynthesis ( P n) with growth at elevated CO2 ranged from a 1·6% reduction in precut leaves of A. vulneraria to a 47·1% stimulation in postcut leaves of S. minor . Stomatal acclimation was observed in leaves of A. vulneraria (reduced stomatal density) and B. erecta (reduced stomatal conductance). The results are discussed in terms of whole-plant resource-use optimization and chalk grassland community competitive interactions at elevated CO2.  相似文献   

13.
The effects of the ratio of Rubisco activase to Rubisco (activase/Rubisco ratio) on light dependent activation of CO2 assimilation were investigated during leaf aging of rice. Changes of photosynthetic CO2 gas exchange rates in relation to step increases of light intensity from two photon flux densities of 60 µmol m−2 s−1 (low initial PFD) and 500 µmol m−2 s−1 (high initial PFD) to saturated PFD of 1 800 µmol m−2 s−1 were measured. These photosynthetic activation processes were considered to be limited by the Rubisco activation rate when analyzed by the relaxation method. The relaxation time of low initial PFD gradually declined from 3 to 33 days after leaf emergence and showed high and negative correlation to the activase/Rubisco ratio. The initial rate of Rubisco activation under low initial PFD linearly correlated to the amounts of Rubisco activase, whereas these were almost constant from 3 to 23 days after leaf emergence. But these correlations could not be recognized in the case of high initial PFD. Moreover, the relaxation times were more sensitive to intercellular CO2 concentration (Ci) under high initial PFD than under low initial PFD, especially, at Ci below 300 µl l−1. These results suggest the involvement of the activase/Rubisco ratio in the photosynthetic activation under relatively low initial PFD, and the limitation of photosynthetic activation under relatively high initial PFD by Rubisco carbamylation during leaf aging of rice.  相似文献   

14.
Rising atmospheric CO2 may increase potential net leaf photosynthesis under short-term exposure, but this response decreases under long-term exposure because plants acclimate to elevated CO2 concentrations through a process known as downregulation. One of the main factors that may influence this phenomenon is the balance between sources and sinks in the plant. The usual method of managing a forage legume like alfalfa requires the cutting of shoots and subsequent regrowth, which alters the source/sink ratio and thus photosynthetic behaviour. The aim of this study was to determine the effect of CO2 (ambient, around 350 vs. 700 µmol mol−1), temperature (ambient vs. ambient + 4° C) and water availability (well-irrigated vs. partially irrigated) on photosynthetic behaviour in nodulated alfalfa before defoliation and after 1 month of regrowth. At the end of vegetative normal growth, plants grown under conditions of elevated CO2 showed photosynthetic acclimation with lower photosynthetic rates, Vcmax and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity. This decay was probably a consequence of a specific rubisco protein reduction and/or inactivation. In contrast, high CO2 during regrowth did not change net photosynthetic rates or yield differences in Vcmax or rubisco total activity. This absence of photosynthetic acclimation was directly associated with the new source-sink status of the plants during regrowth. After cutting, the higher root/shoot ratio in plants and remaining respiration can function as a strong sink for photosynthates, avoiding leaf sugar accumulation, the negative feed-back control of photosynthesis, and as a consequence, photosynthetic downregulation.  相似文献   

15.
We tested the hypothesis that acclimation of foliar dark respiration to CO2 concentration and temperature is associated with adjustments in leaf structure and chemistry. Populus tremuloides Michx. , Betula papyrifera Marsh. , Larix laricina (Du Roi) K. Koch , Pinus banksiana Lamb., and Picea mariana (Mill.) B.S.P. were grown from seed in combined CO2 (370 or 580 μ mol mol–1) and temperature treatments (18/12, 24/18, or 30/24 °C). Temperature and CO2 effects were predominately independent. Specific respiration rates partially acclimated to warmer thermal environments through downward adjustment in the intercept, but not Q 10 of the temperature–response functions. Temperature acclimation of respiration was larger for conifers than broad-leaved species and was associated with pronounced reductions in leaf nitrogen concentrations in conifers at higher growth temperatures. Short-term increases in CO2 concentration did not inhibit respiration. Growth in the elevated CO2 concentration reduced leaf nitrogen and increased non-structural carbohydrate concentrations. However, for a given nitrogen concentration, respiration was higher in leaves grown in the elevated CO2 concentration, as rates increased with increasing carbohydrates. Across species and treatments, respiration rates were a function of both leaf nitrogen and carbohydrate concentrations ( R 2 = 0·71, P < 0·0001). Long-term acclimation of foliar dark respiration to temperature and CO2 concentration is largely associated with changes in nitrogen and carbohydrate concentrations.  相似文献   

16.
The physiological characteristics of holm oak ( Quercus ilex L.) resprouts originated from plants grown under current CO2 concentration (350 μl l−1) (A-resprouts) were compared with those of resprouts originated from plants grown under elevated CO2 (750 μl l−1) (E-resprouts). At their respective CO2 growth concentration, no differences were observed in photosynthesis and chlorophyll fluorescence parameters between the two kinds of resprout. E-resprouts appeared earlier and showed lower stomatal conductance, higher water-use efficiency and increased growth (higher leaf, stem and root biomass and increased height). Analyses of leaf chemical composition showed the effect of elevated [CO2] on structural polysaccharide (higher cellulose content), but no accumulation of total non-structural carbohydrate on area or dry weight basis was seen. Four months after appearance, downregulation of photosynthesis and electron transport components was observed in E-resprouts: lower photosynthetic capacity, photosystem II quantum efficiency, photochemical quenching of fluorescence and relative electron transport rate. Reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) activity, deduced from the maximum carboxylation velocity of RuBisCo, accounts for the observed acclimation. Increased susceptibility of photosynthetic apparatus to increasing irradiance was detected in E-resprouts.  相似文献   

17.
1. One-year-old seedlings of shade tolerant Acer rubrum and intolerant Betula papyrifera were grown in ambient and twice ambient (elevated) CO2, and in full sun and 80% shade for 90 days. The shaded seedlings received 30-min sun patches twice during the course of the day. Gas exchange and tissue–water relations were measured at midday in the sun plants and following 20 min of exposure to full sun in the shade plants to determine the effect of elevated CO2 on constraints to sun-patch utilization in these species.
2. Elevated CO2 had the largest stimulation of photosynthesis in B. papyrifera sun plants and A. rubrum shade plants.
3. Higher photosynthesis per unit leaf area in sun plants than in shade plants of B. papyrifera was largely owing to differences in leaf morphology. Acer rubrum exhibited sun/shade differences in photosynthesis per unit leaf mass consistent with biochemical acclimation to shade.
4. Betula papyrifera exhibited CO2 responses that would facilitate tolerance to leaf water deficits in large sun patches, including osmotic adjustment and higher transpiration and stomatal conductance at a given leaf-water potential, whereas A. rubrum exhibited large increases in photosynthetic nitrogen-use efficiency.
5. Results suggest that species of contrasting successional ranks respond differently to elevated CO2, in ways that are consistent with the habitats in which they typically occur.  相似文献   

18.
19.
Diurnal regulation of photosynthesis in understory saplings   总被引:6,自引:1,他引:5  
Photosynthetic rates of plants grown in natural systems exhibit diurnal patterns often characterized by an afternoon decline, even when measured under constant light and temperature conditions. Since we thought changes in the carbohydrate status could cause this pattern through feedback from starch and sucrose synthesis, we studied the natural fluctuations in photosynthesis rates of plants grown at 36 and 56 Pa CO2 at a FACE (free-air-CO2-enrichment) research site. Light-saturated photosynthesis varied by 40% during the day and was independent of the light-limited quantum yield of photosynthesis, which varied little through the day. Photosynthesis did not correspond with xylem water potential or leaf carbohydrate build-up, but rather with diurnal changes in air vapor-pressure deficit and light. The afternoon decline in photosynthesis also corresponded with decreased stomatal conductance and decreased Rubisco carboxylation efficiency which in turn allowed leaf-airspace CO2 partial pressure to remain constant. Growth at elevated CO2 did not affect the afternoon decline in photosynthesis, but did stimulate early-morning photosynthesis rates relative to the rest of the day. Plants grown at 56 Pa CO2 had higher light-limited quantum yields than those at 36 Pa CO2 but, there was no growth–CO2 effect on quantum yield when measured at 2 kPa O2. Therefore, understory plants have a high light-limited quantum yield that does not vary through the day. Thus, the major diurnal changes in photosynthesis occur under light-saturated conditions which may help understory saplings maximize their sunfleck-use-efficiency.  相似文献   

20.
The effect of elevated CO2 and different levels of nitrogen on the partitioning of nitrogen between photosynthesis and a constitutive nitrogen-based secondary metabolite (the cyanogenic glycoside prunasin) was examined in Eucalyptus cladocalyx . Our hypothesis was that the expected increase in photosynthetic nitrogen-use efficiency of plants grown at elevated CO2 concentrations would lead to an effective reallocation of available nitrogen from photosynthesis to prunasin. Seedlings were grown at two concentrations of CO2 and nitrogen, and the proportion of leaf nitrogen allocated to photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), protein and prunasin compared. Up to 20% of leaf nitrogen was allocated to the cyanogenic glycoside, although this proportion varied with leaf age, position and growth conditions. Leaf prunasin concentration was strongly affected by nitrogen supply, but did not increase, on a dry weight basis, in the leaves from the elevated CO2 treatments. However, the proportion of nitrogen allocated to prunasin increased significantly, in spite of a decreasing pool of leaf nitrogen, in the plants grown at elevated concentrations of CO2. There was less protein in leaves of plants grown at elevated CO2 in both nitrogen treatments, while the concentration of active sites of Rubisco only decreased in plants from the low-nitrogen treatment. These changes in leaf chemistry may have significant implications in terms of the palatability of foliage and defence against herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号