首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single ventricular myocytes of adult mice were prepared by enzymatic dissociation for voltage clamp experiments with the one suction pipette dialysis method. After blocking the Na current by 10(-4) mol/l TTX early outward currents (IEO) with incomplete inactivation could be elicited by clamping from -50 mV to test potentials (VT) positive to -30 mV. Interfering Ca currents were very small (less than 0.6 nA at VT = 0 mV). The approximation of IEO by the q4r-model showed a pronounced decrease in the time constant of activation (tau q) to more positive potentials. At 50 ms test pulses the time course of the incomplete inactivation could be described by two exponentials and a constant. The time constant of the fast exponential (tau r1) showed a slight decline towards more positive test potentials (8.1 +/- 1.0 ms at -10 mV; 5.8 +/- 1.2 ms at +50 mV, mean +/- SD, n = 5) whereas the time constant of the slow exponential (tau r2) was voltage independent (41.1 +/- 7.9 ms, mean +/- SD, n = 5). The contributions of the fast exponential and the pedestal increased towards positive test potentials. The Q10 value for the time constants of activation and fast inactivation was 2.36 +/- 0.19 and 2.51 +/- 0.09 (mean +/- SD, n = 3), respectively. After an initial delay the recovery of IEO at a recovery potential of -50 mV could be fitted monoexponentially with a time constant of 16.3 +/- 2.9 ms (mean +/- SD, n = 3). The time course of the onset of inactivation determined with the double pulse protocol was slower than the decay at the same potential, and could be described as sum of a fast (tau = 18.4 +/- 6.0 ms) and a slow (tau = 62.1 +/- 19.9ms, mean +/- SD, n = 3) exponential. IEO could be blocked completely by 1 mmol/l 4-aminopyridine at potentials up to +20 mV. Stronger depolarizations had an unblocking effect.  相似文献   

2.
Kinetic analysis of barium currents in chick cochlear hair cells.   总被引:17,自引:0,他引:17  
Inward barium current (IBa) through voltage-gated calcium channels was recorded from chick cochlear hair cells using the whole-cell clamp technique. IBa was sensitive to dihydropyridines and insensitive to the peptide toxins omega-agatoxin IVa, omega-conotoxin GVIa, and omega-conotoxin MVIIC. Changing the holding potential over a -40 to -80 mV range had no effect on the time course or magnitude of IBa nor did it reveal any inactivating inward currents. The activation of IBa was modeled with Hodgkin-Huxley m2 kinetics. The time constant of activation, tau m, was 550 microseconds at -30 mV and gradually decreased to 100 microseconds at +50 mV. A Boltzmann fit to the activation curve, m infinity, yielded a half activation voltage of -15 mV and a steepness factor of 7.8 mV. Opening and closing rate constants, alpha m and beta m, were calculated from tau m and m infinity, then fit with modified exponential functions. The H-H model derived by evaluating the exponential functions for alpha m and beta m not only provided an excellent fit to the time course of IBa activation, but was predictive of the time course and magnitude of the IBa tail current. No differences in kinetics or voltage dependence of activation of IBa were found between tall and short hair cells. We conclude that both tall and short hair cells of the chick cochlea predominantly, if not exclusively, express noninactivating L-type calcium channels. These channels are therefore responsible for processes requiring voltage-dependent calcium entry through the basolateral cell membrane, such as transmitter release and activation of Ca(2+)-dependent K+ channels.  相似文献   

3.
4.
D-ala2-D-leu5-enkephalin (100 to 1000 nM) reduces HVA Ca2+ currents of approximately 60% in 92% of the adult rat sensory neurons tested. In 80% of the cells sensitive to enkephalin, the reduction in Ca2+ current amplitude was associated with a prolongation of the current activation that was relieved by means of conditioning pulses in a potential range only about 10 mV positive to the current activation range in control conditions. The time course of the current activation was fitted to a single exponential in control, (tau = 2.23 msec +/- 0.14 n = 38) and double exponential with enkephalin, (tau 1 = 2.18 msec +/- 0.25 and tau 2 = 9.6 msec +/- 1, test pulse to -10 mV, 22 degrees C). A strong conditioning depolarizing prepulse speeded up the activation time course, completely eliminating the slow, voltage-sensitive exponential component, but it was only partial effective in restoring the current amplitude to control values. The voltage-independent inhibitory component that was not relieved could be recovered only by washing out enkephalin. In the remaining 20% of the cells affected, enkephalin decreased Ca2+ current amplitude without prolongation of Ca2+ channel activation. In these cases the conditioning voltage pulse was not effective in relieving the inhibition that persisted also at strong positive test potentials, on the outward currents. The voltage-dependent inhibition occurred slowly after enkephalin superfusion (tau congruent to 12 sec), whereas the voltage-independent one developed about ten times more rapidly. Dopamine (100 microM) could also induce both voltage-dependent and independent modulations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The rapid inward sodium current in spherical clusters of 11-d-old embryonic chick heart cells, ranging in size between 65 and 90 micron diameter, was studied using the two-microelectrode voltage-clamp technique. Using these preparations, it was possible to resolve the activation phase of the rapid inward current for potentials negative to -25 mV at 37 degrees C. The rapid inward current exhibited a voltage and time dependence similar to that observed in other excitable tissues. It was initiated at potential steps more positive than -45 mV. The magnitude of the current reached its maximum value at a potential of approximately -20 mV. The measured reversal potential was that predicted by the Nernst equation for sodium ions. The falling phase of the current followed a single exponential time-course with a time constant of inactivation, tau h, ranging between 2.14 ms at -40 mV and 0.18 ms at -5 mV. The time constant of inactivation, tau h, determined by a single voltage-step protocol was compared to the constant, tau c, determined by a double voltage-step protocol and no significant different between the two constants of inactivation was found. Furthermore, the time constants of inactivation and reactivation at the same potential in the same preparation were similar. The results of this study demonstrate that the sodium current of heart cells recorded at 37 degrees C can be described by Hodgkin-Huxley kinetics with speeds approximately four times faster than the squid giant axon at 15 degrees C.  相似文献   

6.
Inactivation viewed through single sodium channels   总被引:17,自引:12,他引:5       下载免费PDF全文
Recordings of the sodium current in tissue-cultured GH3 cells show that the rate of inactivation in whole cell and averaged single channel records is voltage dependent: tau h varied e-fold/approximately 26 mV. The source of this voltage dependence was investigated by examining the voltage dependence of individual rate constants, estimated by maximum likelihood analysis of single channel records, in a five-state kinetic model. The rate constant for inactivating from the open state, rather than closing, increased with depolarization, as did the probability that an open channel inactivates. The rate constant for closing from the open state had the opposite voltage dependence. Both rate constants contributed to the mean open time, which was not very voltage dependent. Both open time and burst duration were less than tau h for voltages up to -20 mV. The slowest time constant of activation, tau m, was measured from whole cell records, by fitting a single exponential either to tail currents or to activating currents in trypsin-treated cells, in which the inactivation was abolished. tau m was a bell-shaped function of voltage and had a voltage dependence similar to tau h at voltages more positive than -35 mV, but was smaller than tau h. At potentials more negative than about -10 mV, individual channels may open and close several times before inactivating. Therefore, averaged single channel records, which correspond with macroscopic current elicited by a depolarization, are best described by a convolution of the first latency density with the autocorrelation function rather than with 1 - (channel open time distribution). The voltage dependence of inactivation from the open state, in addition to that of the activation process, is a significant factor in determining the voltage dependence of macroscopic inactivation. Although the rates of activation and inactivation overlapped greatly, independent and coupled inactivation could not be statistically distinguished for two models examined. Although rates of activation affect the observed rate of inactivation at intermediate voltages, extrapolation of our estimates of rate constants suggests that at very depolarized voltages the activation process is so fast that it is an insignificant factor in the time course of inactivation. Prediction of gating currents shows that an inherently voltage-dependent inactivation process need not produce a conspicuous component in the gating current.  相似文献   

7.
Membrane currents in isolated swine tracheal smooth muscle cells were investigated using a pipette solution containing BAPTA-Ca2+ buffer and Cs+ as the major cation. With a pipette solution containing 100 nM free Ca2+, acetylcholine (ACh; 1-100 microM), in a concentration-dependent manner, activated a current without inducing shortening of cells, although neither 1 mM histamine nor 1 microM leukotriene D4 activated the current (n = 7, n is the number of cells). The effect of 100 microM ACh was suppressed by pretreatment with 100 microM atropine (n = 6) or intracellular application of preactivated pertussis toxin at a concentration of 0.1 microg x mL(-1) (n = 8). Genistein (0.1-100 microM), in a concentration-dependent manner, suppressed the activation of the inward current by 100 microM ACh, whereas it did not significantly suppress that of the outward current (n = 6-8). With a pipette solution containing 50 nM free Ca2+, outward current, but not inward current, was activated by 100 microM ACh (n = 10). When the pipette solution had free Ca2+ concentrations greater than 50 nM, the inward current together with the outward current was activated. The ratio between the amplitude of the inward and outward currents was significantly increased as the free Ca2+ concentration in the pipette solution increased. The steady-state activation curve of the ACh-activated current with the 50 nM free Ca2+ pipette solution was fitted by a single Boltzmann distribution (Vh = +69.8 mV, k = -11.9 mV, n = 10). The activation time constant became smaller as the membrane potential was more depolarized (164.3+/-5.9 ms at +40 mV to 92.4+/-6.3 ms at +120 mV, n = 10). The reversal potential was not significantly changed by reducing extracellular Cl- concentration to one-tenth of the control (n = 8), suggesting that the current is a nonselective cationic current. These results suggest that ACh activates an outward nonselective cationic current via pertussis toxin-sensitive G-protein(s) coupled with muscarinic receptors. Involvement of genistein-sensitive tyrosine kinase in the activation process of the current is unlikely.  相似文献   

8.
Sodium current and intramembrane gating charge movement (Q) were monitored in voltage-clamped frog node of Ranvier after modification of all sodium channels by batrachotoxin (BTX). Sodium current activation followed a single-exponential time course, provided a delay was interposed between the onset of the step ON depolarization and that of the current change. The delay decreased with increased ON depolarization and, for a constant ON depolarization, increased with prehyperpolarization. ON charge movement followed a single-exponential time course with time constants tau Q,ON slightly larger than tau Na, ON. For pulses between -70 and -50 mV, tau Q,ON/tau Na,ON = 1.14 +/- 0.08. The OFF charge movement and OFF sodium current tails after a depolarizing pulse followed single-exponential time courses, with tau Q, OFF larger than tau Na, OFF. tau Q,OFF/tau Na,OFF increased with OFF voltage from 1 near -100 mV to 2 near -160 mV. At a set OFF potential (-120 mV), both tau Q,OFF and tau Na,OFF increased with ON pulse duration. The delay in INa activation and the effect of ON pulse duration on tau Q,OFF and tau Na,OFF are inconsistent with a simple two-state, single-transition model for the gating of batrachotoxin-modified sodium channels.  相似文献   

9.
Intracellular and patch clamp recordings were made from embryonic mouse spinal cord neurons growing in primary cell culture. Outside-out membrane patches obtained from these cells usually showed spontaneous single channel currents when studied at the resting potential (-56 +/- 1.5 mV). In 18 out of 30 patches tested, spontaneous single channel activity was abolished by making Tris+ the major cation on both sides of the membrane. The remaining patches continued to display spontaneous single channel currents under these conditions. These events reversed polarity at a patch potential of 0 mV and displayed a mean single channel conductance of 24 +/- 1.2 pS. Application of the putative inhibitory transmitter gamma-aminobutyric acid (0.5-10 microM) to outside-out patches of spinal cord cell membrane induced single channel currents in 10 out of 15 patches tested. These channels had a primary conductance of 29 +/- 2.8 pS in symmetrical 145 mM Cl- solutions. Frequency distributions for the open times of these channels were well fit by the sum of a fast exponential term ("of") with a time constant tau of = 4 +/- 1.3 ms and a slow exponential term ("os") with a time constant tau os = 24 +/- 8.1 ms. Frequency distributions for channel closed times were also well fit by a double exponential equation, with time constants tau cf = 2 +/- 0.2 ms and tau cs = 62 +/- 20.9 ms.  相似文献   

10.
The whole cell version of the patch clamp technique was used to identify and characterize voltage-gated Ca2+ channels in enzymatically dissociated bovine adrenal zona fasciculata (AZF) cells. The great majority of cells (84 of 86) expressed only low voltage-activated, rapidly inactivating Ca2+ current with properties of T-type Ca2+ current described in other cells. Voltage-dependent activation of this current was fit by a Boltzmann function raised to an integer power of 4 with a midpoint at -17 mV. Independent estimates of the single channel gating charge obtained from the activation curve and using the "limiting logarithmic potential sensitivity" were 8.1 and 6.8 elementary charges, respectively. Inactivation was a steep function of voltage with a v1/2 of -49.9 mV and a slope factor K of 3.73 mV. The expression of a single Ca2+ channel subtype by AZF cells allowed the voltage-dependent gating and kinetic properties of T current to be studied over a wide range of potentials. Analysis of the gating kinetics of this Ca2+ current indicate that T channel activation, inactivation, deactivation (closing), and reactivation (recovery from inactivation) each include voltage-independent transitions that become rate limiting at extreme voltages. Ca2+ current activated with voltage- dependent sigmoidal kinetics that were described by an m4 model. The activation time constant varied exponentially at test potentials between -30 and +10 mV, approaching a voltage-independent minimum of 1.6 ms. The inactivation time constant (tau i) also decreased exponentially to a minimum of 18.3 ms at potentials positive to 0 mV. T channel closing (deactivation) was faster at more negative voltages; the deactivation time constant (tau d) decreased from 8.14 +/- 0.7 to 0.48 +/- 0.1 ms at potentials between -40 and -150 mV. T channels inactivated by depolarization returned to the closed state along pathways that included two voltage-dependent time constants. tau rec-s ranged from 8.11 to 4.80 s when the recovery potential was varied from - 50 to -90 mV, while tau rec-f decreased from 1.01 to 0.372 s. At potentials negative to -70 mV, both time constants approached minimum values. The low voltage-activated Ca2+ current in AZF cells was blocked by the T channel selective antagonist Ni2+ with an IC50 of 20 microM. At similar concentrations, Ni2+ also blocked cortisol secretion stimulated by adrenocorticotropic hormone. Our results indicate that bovine AZF cells are distinctive among secretory cells in expressing primarily or exclusively T-type Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Sodium and calcium currents in dispersed mammalian septal neurons   总被引:2,自引:0,他引:2       下载免费PDF全文
Voltage-gated Na+ and Ca2+ conductances of freshly dissociated septal neurons were studied in the whole-cell configuration of the patch-clamp technique. All cells exhibited a large Na+ current with characteristic fast activation and inactivation time courses. Half-time to peak current at -20 mV was 0.44 +/- 0.18 ms and maximal activation of Na+ conductance occurred at 0 mV or more positive membrane potentials. The average value was 91 +/- 32 nS (approximately 11 mS cm-2). At all membrane voltages inactivation was well fitted by a single exponential that had a time constant of 0.44 +/- 0.09 ms at 0 mV. Recovery from inactivation was complete in approximately 900 ms at -80 mV but in only 50 ms at -120 mV. The decay of Na+ tail currents had a single time constant that at -80 mV was faster than 100 microseconds. Depolarization of septal neurons also elicited a Ca2+ current that peaked in approximately 6-8 ms. Maximal peak Ca2+ current was obtained at 20 mV, and with 10 mM external Ca2+ the amplitude was 0.35 +/- 0.22 nA. During a maintained depolarization this current partially inactivated in the course of 200-300 ms. The Ca2+ current was due to the activity of two types of conductances with different deactivation kinetics. At -80 mV the closing time constants of slow (SD) and fast (FD) deactivating channels were, respectively, 1.99 +/- 0.2 and 0.11 +/- 0.03 ms (25 degrees C). The two kinds of channels also differed in their activation voltage, inactivation time course, slope of the conductance-voltage curve, and resistance to intracellular dialysis. The proportion of SD and FD channels varied from cell to cell, which may explain the differential electrophysiological responses of intracellularly recorded septal neurons.  相似文献   

12.
Ionic currents of enzymatically dispersed type I and type II cells of the carotid body have been studied using the whole cell variant of the patch-clamp technique. Type II cells only have a tiny, slowly activating outward potassium current. By contrast, in every type I chemoreceptor cell studied we found (a) sodium, (b) calcium, and (c) potassium currents. (a) The sodium current has a fast activation time course and an activation threshold at approximately -40 mV. At all voltages inactivation follows a single exponential time course. The time constant of inactivation is 0.67 ms at 0 mV. Half steady state inactivation occurs at a membrane potential of approximately -50 mV. (b) The calcium current is almost totally abolished when most of the external calcium is replaced by magnesium. The activation threshold of this current is at approximately -40 mV and at 0 mV it reaches a peak amplitude in 6-8 ms. The calcium current inactivates very slowly and only decreases to 27% of the maximal value at the end of 300-ms pulses to 40 mV. The calcium current was about two times larger when barium ions were used as charge carriers instead of calcium ions. Barium ions also shifted 15-20 mV toward negative voltages the conductance vs. voltage curve. Deactivation kinetics of the calcium current follows a biphasic time course well fitted by the sum of two exponentials. At -80 mV the slow component has a time constant of 1.3 +/- 0.4 ms whereas the fast component, with an amplitude about 20 times larger than the slow component, has a time constant of 0.16 +/- 0.03 ms. These results suggest that type I cells have predominantly fast deactivating calcium channels. The slow component of the tails may represent the activity of a small population of slowly deactivating calcium channels, although other possibilities are considered. (c) Potassium current seems to be mainly due to the activity of voltage-dependent potassium channels, but a small percentage of calcium-activated channels may also exist. This current activates slowly, reaches a peak amplitude in 5-10 ms, and thereafter slowly inactivates. Inactivation is almost complete in 250-300 ms. The potassium current is reversibly blocked by tetraethylammonium. Under current-clamp conditions type I cells can spontaneously fire large action potentials. These results indicate that type I cells are excitable and have a variety of ionic conductances. We suggest a possible participation of these conductances in chemoreception.  相似文献   

13.
1. Kinetics of activation and desensitization phases of the acetylcholine (ACh)-induced chloride current (ICI) were studied using isolated single neurons of Japanese land snail and the "concentration clamp" technique. 2. The dose-response curve for the peak ICI gave a dissociation constant of 7.1 x 10(-6) M and a Hill coefficient of 1.8. 3. The current-voltage relationship was linear in the voltage range examined (-60 to +10 mV) and the reversal potential (EACh) was -7.2 +/- 1.5 mV (N = 10). The value was close to the calculated equilibrium potential for chloride ions (ECI). 4. Both activation and desensitization phases of the ACh-induced ICI consisted of a single exponential at concentrations less than 3 x 10(-6) M and a double exponential at higher concentrations. The time constants of both phases decreased with increasing ACh concentrations but showed no potential dependency. 5. The recovery from desensitization of the ICI induced by 5 x 10(-6) M ACh proceeded double exponentially, with time constants of 11 and 114 sec at a holding potential of -30 mV. 6. Noise analysis was performed on a steady-state current induced by 3 x 10(-7) to 2 x 10(-6) M ACh. The mean open time was about 60 msec at 10(-6) M ACh and the single-channel conductance was 14 PS. 7. These results suggest that the ACh receptor-Cl channel complex in snail neurons has two binding sites with the dissociation constant of 7.1 x 10(-6) M and is rapidly activated and desensitized to a steady level in the presence of the agonist.  相似文献   

14.
In whole cell patch clamp recordings on enzymatically dissociated adrenal zona fasciculata (AZF) cells, a rapidly inactivating A-type K+ current was observed in each of more than 150 cells. Activation of IA was steeply voltage dependent and could be described by a Boltzmann function raised to an integer power of 4, with a midpoint of -28.3 mV. Using the "limiting logarithmic potential sensitivity," the single channel gating charge was estimated to be 7.2 e. Voltage-dependent inactivation could also be described by a Boltzmann function with a midpoint of -58.7 mV and a slope factor of 5.92 mV. Gating kinetics of IA included both voltage-dependent and -independent transitions in pathways between closed, open, and inactivated states. IA activated with voltage-dependent sigmoidal kinetics that could be fit with an n4h formalism. The activation time constant, tau a, reached a voltage- independent minimum at potentials positive to 0 mV. IA currents inactivated with two time constants that were voltage independent at potentials ranging from -30 to +45 mV. At +20 mV, tau i(fast) and tau i(slow) were 13.16 +/- 0.64 and 62.26 +/- 5.35 ms (n = 34), respectively. In some cells, IA inactivation kinetics slowed dramatically after many minutes of whole cell recording. Once activated by depolarization, IA channels returned to the closed state along pathways with two voltage-dependent time constants which were 0.208 s, tau rec-f and 10.02 s, tau rec-s at -80 mV. Approximately 90% of IA current recovered with slow kinetics at potentials between -60 and -100 mV. IA was blocked by 4-aminopyridine (IC50 = 629 microM) through a mechanism that was strongly promoted by channel activation. Divalent and trivalent cations including Ni2+ and La3+ also blocked IA with IC50's of 467 and 26.4 microM, respectively. With respect to biophysical properties and pharmacology, IA in AZF cells resembles to some extent transient K+ currents in neurons and muscle, where they function to regulate action potential frequency and duration. The function of this prominent current in steroid hormone secretion by endocrine cells that may not generate action potentials is not yet clear.  相似文献   

15.
H S Lopez  A M Brown 《Neuron》1991,7(6):1061-1068
Membrane depolarization relieves the G protein-mediated inhibition or block of high threshold Ca2+ channel currents. We found that the net rate of reblocking depended on the extent of G protein activation. With low intracellular concentrations of GTP gamma S reblocking rates resembled inactivation rates; with higher concentrations reblocking rates increased progressively. Reblocking kinetics were fit with a sum of two exponential functions having time constants (in ms) tau F greater than or equal to 10 and tau S greater than or equal to 30. Unblock during depolarization was fit by a single exponential function with time constant tau A similar to tau F. A model was developed in which unblocking followed dissociation of a blocking molecule, possibly the G protein itself, from Ca2+ channels, and reblocking occurred at rates that depended on the concentration of the blocking molecule. The time course of Ca2+ entry and thus presynaptic Ca2+ levels can be regulated by both the concentration of the G-protein-dependent blocking particle and membrane potential.  相似文献   

16.
Fast-deactivating calcium channels in chick sensory neurons   总被引:8,自引:3,他引:5       下载免费PDF全文
Whole-cell Ca and Ba currents were studied in chick dorsal root ganglion (DRG) cells kept 6-10 in culture. Voltage steps with a 15-microseconds rise time were imposed on the membrane using an improved patch-clamp circuit. Changes in membrane current could be measured 30 microseconds after the initiation of the test pulse. Currents through Ca channels were recorded under conditions that eliminate Na and K currents. Tail currents, associated with Ca channel closing, decayed in two distinct phases that were very well fitted by the sum of two exponentials. The time constants tau f and tau s were near 160 microseconds and 1.5 ms at -80 mV, 20 degrees C. The tail current components, called FD and SD (fast-deactivating and slowly deactivating), are Ca channel currents. They were greatly reduced when Mg2+ replaced all other divalent cations in the bath. The SD component inactivated almost completely as the test pulse duration was increased to 100 ms. It was suppressed when the cell was held at membrane potentials positive to -50 mV and was blocked by 100-200 microM Ni2+. This behavior indicates that the SD component was due to the closing of the low-voltage-activated (LVA) Ca channels previously described in this preparation. The FD component was fully activated with 10-ms test pulses to +20 mV at 20 degrees C, and inactivated to approximately 30% during 500-ms test pulses. It was reduced in amplitude by holding at -40 mV, but was only slightly reduced by micromolar concentrations of Ni2+. Replacement of Ca2+ with Ba2+ increased the FD tail current amplitudes by a factor of approximately 1.5. The deactivation kinetics did not change (a) as channels inactivated during progressively longer pulses or (b) when the degree of activation was varied. Further, tau f was affected neither by changing the holding potential nor by varying the test pulse amplitude. Lowering the temperature from 20 to 10 degrees C decreased tau f by a factor of 2.5. In all cases, the FD component was very well fitted by a single exponential. There was no indication of an additional tail component of significant size. Our findings indicate that the FD component is due to closing of a single class of Ca channels that coexist with the LVA Ca channel type in chick DRG neurons.  相似文献   

17.
Rabbit skeletal muscle transverse tubule (T) membranes were fused with planar bilayers. Ca channel activity was studied with a "cellular" approach, using solutions that were closer to physiological than in previous studies, including asymmetric extracellular divalent ions as current carriers. The bilayer was kept polarized at -80 mV and depolarizing pulses were applied under voltage clamp. Upon depolarization the channels opened in a steeply voltage-dependent manner, and closed rapidly at the end of the pulses. The activity was characterized at the single-channel level and on macroscopic ensemble averages of test-minus-control records, using as controls the null sweeps. The open channel events had one predominant current corresponding to a conductance of 9 pS (100 mM Ba2+). The open time histogram was fitted with two exponentials, with time constants of 5.8 and 30 ms (23 degrees C). Both types of events were virtually absent at -80 mV. The average open probability (fractional open time) increased sigmoidally from 0 to a saturation level of 0.08, following a Boltzmann function centered at -25 mV and with a steepness factor of 7 mV. Ensemble averages of test-minus-control currents showed a sigmoidal activation followed by inactivation during the pulse and deactivation (closing) after the pulse. The ON time course was well fitted with "m3h" kinetics, with tau m = 120 ms and tau h = 1.2 s. Deactivation was exponential with tau = 8 ms. This study demonstrates a technique for obtaining Ca channel events in lipid bilayers that are strictly voltage dependent and exhibit most of the features of the macroscopic ICa. The technique provides a useful approach for further characterization of channel properties, as exemplified in the accompanying paper, that describes the consequences on channel properties of phosphorylation by cAMP dependent protein kinase.  相似文献   

18.
Study of the excitatory sodium current (INa) intact heart muscle has been hampered by the limitations of voltage clamp methods in multicellular preparations that result from the presence of large series resistance and from extracellular ion accumulation and depletion. To minimize these problems we voltage clamped and internally perfused freshly isolated canine cardiac Purkinje cells using a large bore (25-microns diam) double-barreled flow-through glass suction pipette. Control of [Na+]i was demonstrated by the agreement of measured INa reversal potentials with the predictions of the Nernst relation. Series resistance measured by an independent microelectrode was comparable to values obtained in voltage clamp studies of squid axons (less than 3.0 omega-cm2). The rapid capacity transient decays (tau c less than 15 microseconds) and small deviations of membrane potential (less than 4 mV at peak INa) achieved in these experiments represent good conditions for the study of INa. We studied INa in 26 cells (temperature range 13 degrees-24 degrees C) with 120 or 45 mM [Na+]o and 15 mM [Na+]i. Time to peak INa at 18 degrees C ranged from 1.0 ms (-40 mV) to less than 250 microseconds (+ 40 mV), and INa decayed with a time course best described by two time constants in the voltage range -60 to -10 mV. Normalized peak INa in eight cells at 18 degrees C was 2.0 +/- 0.2 mA/cm2 with [Na+]o 45 mM and 4.1 +/- 0.6 mA/cm2 with [Na+]o 120 mM. These large peak current measurements require a high density of Na+ channels. It is estimated that 67 +/- 6 channels/micron 2 are open at peak INa, and from integrated INa as many as 260 Na+ channels/micron2 are available for opening in canine cardiac Purkinje cells.  相似文献   

19.
Gating current, Ig, was recorded in Myxicola axons with series resistance compensation and higher time resolution than in previous studies. Ig at ON decays as two exponentials with time constants, tau ON-F and tau ON-S, very similar to squid values. No indication of an additional very fast relaxation was detected, but could be still unresolved. Ig at OFF also displays two exponentials, neither reflecting recovery from charge immobilization. Deactivation of the two I(ON) components may proceed with well-separated exponentials at -100 mV. INa tail currents at OFF also display two exponentials plus a third very slow relaxation of 5-9% of the total tail current. The very slow component is probably deactivation of a very small subpopulation of TTX sensitive channels. A -100 mV, means for INa tail component time constants (four axons) are 76 microseconds (range: 53-89 microseconds) and 344 microseconds (range: 312-387 microseconds), and for IOFF (six axons) 62 microseconds (range: 34-87 microseconds) and 291 microseconds (range: 204-456 microseconds) in reasonable agreement. INa ON activation time constant, tau A, is clearly slower than tau ON-F at all potentials. Except for the interval -30 to -15 mV, tau A is clearly faster than tau ON-S, and has a different dependency on potential. tau ON-S is several fold smaller than tau h. Computations with a closed2----closed1----open activation model indicated Na tail currents are consistent with a closed1----open rate constant greater than the closed2----closed1.  相似文献   

20.
The inactivation of calcium channels in mammalian pituitary tumor cells (GH3) was studied with patch electrodes under voltage clamp in cell-free membrane patches and in dialyzed cells. The calcium current elicited by depolarization from a holding potential of -40 mV passed predominantly through one class of channels previously shown to be modulated by dihydropyridines and cAMP-dependent phosphorylation (Armstrong and Eckert, 1987). When exogenous calcium buffers were omitted from the pipette solution, the macroscopic calcium current through those channels inactivated with a half time of approximately 10 ms to a steady state level 40-75% smaller than the peak. Inactivation was also measured as the reduction in peak current during a test pulse that closely followed a prepulse. Inactivation was largely reduced or eliminated by (a) buffering free calcium in the pipette solution to less than 10(-8) M; (b) replacing extracellular calcium with barium; (c) increasing the prepulse voltage from +10 to +60 mV; or (d) increasing the intracellular concentration of cAMP, either 'directly' with dibutyryl-cAMP or indirectly by activating adenylate cyclase with forskolin or vasoactive intestinal peptide. Thus, inactivation of the dihydropyridine-sensitive calcium channels in GH3 cells only occurs when membrane depolarization leads to calcium ion entry and intracellular accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号