首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied fluctuating asymmetry (FA) in the tarsus length of seven forest-restricted bird species, two of which are globally critically endangered, in three indigenous forest remnants of a recently fragmented, afrotropical biodiversity hot spot. Based on mixed regression analysis and an extension of Levene''s test, individuals from the most degraded fragment showed four- to sevenfold higher asymmetry levels compared to those from the least degraded one, with intermediate levels in the moderately disturbed fragment. When comparing contemporary FA levels with measurements of museum specimens collected 50 years ago, we found highly significant increases in asymmetry in the most degraded fragment but no differences in the least degraded one. These strikingly parallel spatial and temporal patterns across species confirm that repeated measurements of FA can provide a sensitive early warning system for monitoring stress effects in highly threatened ecosystems.  相似文献   

2.
Aim This study analyses the distribution and abundance of birds from a forested tropical gradient in order to determine whether elevationally distinct communities are detectable in this habitat. Location An avifaunal census was carried out on a single transect within the tropical forest of the Udzungwa Mountains in the Eastern Arc, Tanzania, covering a range in elevation from 300 to 1850 m. Methods Two complementary data sets on forest birds were analysed, encompassing (1) data derived from standardized 20‐ha spot‐mapping censuses performed at nine elevations over 175‐m intervals from 400 to 1800 m a.s.l., and (2) all observations of birds binned into 32 data points at 50‐m intervals, from 300 to 1850 m a.s.l. The degree of zonation in the avian community along the elevational gradient was examined using the chronological clustering method, an agglomerative hierarchical clustering method that can be carried out with a range of similarity indices. Results The chronological clustering analysis of the data set based on standardized spot‐mapping revealed a clearly defined boundary at c. 1200 m a.s.l., separating lowland from montane communities. Most bird species could be categorized as belonging to one of these two communities. The data set based on all observations revealed a number of potential secondary boundaries, although these boundaries delimited the entire elevational ranges of individual species in only relatively few cases. Main conclusions In contrast to previously published studies, we find evidence of an elevational zonation of distinct communities within a seemingly homogeneous habitat. Although similar boundaries have been assumed to arise as a result of vegetational ecotones, or because of interspecific competition, these mechanisms are poorly corroborated. We suggest that the causes of patterns of zonation are not well understood, and that the interplay among species distributions, species richness, and environmental factors needs more consideration. The chronological clustering method is proposed as an appropriate tool for studying these specific patterns.  相似文献   

3.
Habitat fragmentation can restrict geneflow, reduce neighbourhood effective population size, and increase genetic drift and inbreeding in small, isolated habitat remnants. The extent to which habitat fragmentation leads to population fragmentation, however, differs among landscapes and taxa. Commonly, researchers use information on the current status of a species to predict population effects of habitat fragmentation. Such methods, however, do not convey information on species-specific responses to fragmentation. Here, we compare levels of past population differentiation, estimated from microsatellite genotypes, with contemporary dispersal rates, estimated from multi-strata capture-recapture models, to infer changes in mobility over time in seven sympatric, forest-dependent bird species of a Kenyan cloud forest archipelago. Overall, populations of sedentary species were more strongly differentiated and clustered compared to those of vagile ones, while geographical patterning suggested an important role of landscape structure in shaping genetic variation. However, five of seven species with broadly similar levels of genetic differentiation nevertheless differed substantially in their current dispersal rates. We conclude that post-fragmentation levels of vagility, without reference to past population connectivity, may not be the best predictor of how forest fragmentation affects the life history of forest-dependent species. As effective conservation strategies often hinge on accurate prediction of shifts in ecological and genetic relationships among populations, conservation practices based solely upon current population abundances or movements may, in the long term, prove to be inadequate.  相似文献   

4.
The cork oak forest of Ma'amora in north-western Morocco was the largest cork oak forest in the world until the beginning of the 20th century. Due to growing land use for agriculture and urbanization, however, this forest has become fragmented into relatively small and isolated patches. The effects of this fragmentation on the diversity of wild animal communities have never been investigated despite the importance of such investigations in elaborating long-term conservation plans of the biodiversity of this forest system. In this study of a sample of 44 forest patches we assessed the relationships between species numbers of wintering, breeding and spring migrant birds and patch size, shape, isolation and vegetation structure. We found that species richnesses of the three studied bird assemblages were strongly related to local vegetation structure, namely to the diversity and abundance of trees and bushes. Patches with higher diversity and cover of trees and bushes support higher numbers of bird species. However, patch size, shape and isolation were not significant predictors of bird richness. These results suggest that bird communities in the studied forest patches were more likely shaped by local habitat suitability rather than the amount of habitat or patch isolation. The results also demonstrate negative effects of current human pressures, namely logging, grazing and disturbance, on the diversity of bird communities in this forest system. This emphasizes the need for urgent management efforts aiming at reducing the negative impacts of forest use by humans on bird diversity in this forest system.  相似文献   

5.
The construction of roads near protected forest areas alters ecosystem function by creating habitat fragmentation and through several direct and indirect negative effects such as increased pollution, animal mortality through collisions, disturbance caused by excessive noise and wind turbulence. Noise in particular may have strong negative effects on animal groups such as frogs and birds, that rely on sound for communication as it can negatively interfere with vocalizations used for territorial defense or courtship. Thus, birds are expected to be less abundant close to the road where noise levels are high. In this study, we examined the effects of road traffic noise levels on forest bird species in a protected tropical forest in Costa Rica. Data collection was conducted in a forest segment of the Carara National Park adjacent to the Coastal Highway. We carried out 120 ten minute bird surveys and measured road noise levels 192 times from the 19th to the 23rd of April and from the 21st to the 28th of November, 2008. To maximize bird detection for the species richness estimates we operated six 12 m standard mist nets simultaneously with the surveys. The overall mist-netting effort was 240 net/h. In addition, we estimated traffic volumes by tallying the number of vehicles passing by the edge of the park using 24 one hour counts throughout the study. We found that the relative abundance of birds and bird species richness decreased significantly with the increasing traffic noise in the dry and wet season. Noise decreased significantly and in a logarithmic way with distance from the road in both seasons. However, noise levels at any given distance were significantly higher in the dry compared to the wet season. Our results suggest that noise might be an important factor influencing road bird avoidance as measured by species richness and relative abundance. Since the protected forest in question is located in a national park subjected to tourist visitation, these results have conservation as well as management implications. A decrease in bird species richness and bird abundance due to intrusive road noise could negatively affect the use of trails by visitors. Alternatives for noise attenuation in the affected forest area include the enforcement of speed limits and the planting of live barriers.  相似文献   

6.
Five species of Eurasian birds displayed a range of mitochondrial DNA phylogeographic structures, including a single widespread lineage (common sandpiper), two geographically unsorted and closely related lineages (long-tailed tit), three partially overlapping closely related lineages (reed bunting), and two divergent geographically isolated lineages that rival species distinction (red-breasted flycatcher and skylark). Only the red-breasted flycatcher and the skylark displayed congruent phylogeographic structures. These five species represent different stages of diversification and speciation. There was little evidence that natural selection had influenced mitochondrial NADH dehydrogenase subunit 2 (ND2) sequences. In several instances, population growth was hypothesized, based on haplotype distributions within populations.  相似文献   

7.
The management of animal endangered species requires detailed information on their distribution and abundance, which is often hard to obtain. When animals communicate using sounds, one option is to use automatic sound recorders to gather information on the species for long periods of time with low effort. One drawback of this method is that processing all the information manually requires large amounts of time and effort. Our objective was to create a relatively “user‐friendly” (i.e., that does not require big programming skills) automatic detection algorithm to improve our ability to get basic data from sound‐emitting animal species. We illustrate our algorithm by showing two possible applications with the Hawai'i ‘Amakihi, Hemignathus virens virens, a forest bird from the island of Hawai'i. We first characterized the ‘Amakihi song using recordings from areas where the species is present in high densities. We used this information to train a classification algorithm, the support vector machine (SVM), in order to identify ‘Amakihi songs from a series of potential songs. We then used our algorithm to detect the species in areas where its presence had not been previously confirmed. We also used the algorithm to compare the relative abundance of the species in different areas where management actions may be applied. The SVM had an accuracy of 86.5% in identifying ‘Amakihi. We confirmed the presence of the ‘Amakihi at the study area using the algorithm. We also found that the relative abundance of ‘Amakihi changes among study areas, and this information can be used to assess where management strategies for the species should be better implemented. Our automatic song detection algorithm is effective, “user‐friendly” and can be very useful for optimizing the management and conservation of those endangered animal species that communicate acoustically.  相似文献   

8.
The spatial scale at which populations show synchronous temporal fluctuations in abundance, relative to the spatial scale over which they can disperse, may influence the persistence of local and regional populations. There have been frequent demonstrations of spatial synchrony in population dynamics of animal populations. But few studies have investigated the degree of spatial synchrony in less mobile taxa, e.g. plants, where life history, dispersal and interaction with the environment would be different due to a sessile phase. This study has during three years investigated the synchrony in local population size changes in four short-lived species, and during a nine-year period for one long-lived species, in a semi-natural grassland landscape in southern Sweden. The spatial scale of this study was less than 15 km, which is quite small in comparison with other studies, but the temporal scale was of similar magnitude as the few studies on plant abundances and synchrony. When using detrended estimates of population size change, a significant pattern of decreasing synchrony with increasing distance was found for the two short-lived species that were most confined to manage semi-natural grasslands. Spatial synchrony was detected up to a few km. However, the species displayed synchrony in different years. The degree of synchrony can thus vary considerably across years and among species. Spatially autocorrelated weather conditions could partly explain the spatial scale of synchrony found during certain time intervals. However, the prevailing asynchrony suggests that local factors dominate the dynamics of the populations at the investigated scale.  相似文献   

9.
The abundance of woodland birds in fragmented forest landscapes may depend on the properties of patch networks. Understanding the consequences of deforestation on woodland birds, therefore, necessarily requires determining which changes in landscape structure make a major contribution to the degradation and subdivision of patch networks. In this study, we addressed how accelerated deforestation in central Chile has modified the landscape structure and function for thorn-tailed rayaditos—a woodland specialist bird. Using a graphical approach based on the habitat use and movement patterns of rayaditos, we quantified the reduction of the internal connectivity of components (i.e., connected patch networks) in the last two decades and determined the main mechanisms responsible for this connectivity loss. Forest cover decreased 61.7 % between 1989 and 2009. The component size, the fraction of components with ≥1 occupied patches and the number of patches per component experienced a large decline during the study period. Over time, most forest cover (ca. 80 %) was contained in only two components. The connectivity of components decreased steeply by 90 %. Only the loss of large patches made a highly significant contribution to explaining changes in connectivity, while the removal of stepping stones was marginally significant. The conversion of forest both to shrubland and to peri-urban areas were the only land-use variables explaining connectivity change with effects that changed over time. Conservation measures to ensure persistence of rayaditos populations in central Chile should be focused on the retention of key elements for connectivity.  相似文献   

10.
Habitat fragmentation modifies ecological patterns and processes through changes in species richness and abundance. In the coastal Maulino forest, central Chile, both species richness and abundance of insectivorous birds increases in forest fragments compared to continuous forest. Through a field experiment, we examined larvae predation in fragmented forests. Higher richness and abundance of birds foraging at forest fragments translated into more insect larvae preyed upon in forest fragments than in continuous forest. The assessed level of insectivory in forest fragments agrees with lower herbivory levels in forest fragments. This pattern strongly suggests the strengthening of food interactions web in forest fragments of coastal Maulino forest.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
Information on the pharmacokinetics and pharmacodynamics of anti-inflammatory drugs in birds is scarce. Choice of drug and of dosage is usually empirical, since studies of anti-inflammatory drugs are lacking. In this study, three common veterinary non-steroidal anti-inflammatory drugs (NSAIDs) were administered intravenously to five different bird species. Sodium salicylate, flunixin and meloxicam were selected as anti-inflammatory drugs. These NSAIDs were administered intravenously to chickens (Gallus gallus), ostriches (Struthio camelus), ducks (Anas platyrhynchos), turkeys (Meleagris gallopavo) and pigeons (Columba livia). Plasma concentrations of the drugs were determined by validated high-performance liquid chromatography methods and pharmacokinetic parameters were calculated. Most bird species exhibited rapid elimination of these drugs. Ostriches had the fastest elimination rate for all three NSAIDs, but there were some interesting species differences. Chickens had a half-life that was approximately 10-fold as long as the other bird species for flunixin. The half-life of chickens and pigeons was three-fold as long as the other bird species for meloxicam, and, for salicylic acid, the half-life in pigeons was at least three-five-fold longer than in the other bird species.  相似文献   

12.
We examined the distribution of tree species across five habitats in 69 small plots within a single watershed of the Gunung Palung National Park, West Kalimantan, Indonesia (GPNP). The spatially complex distribution and close proximity of habitats provided an opportunity to test habitat specificity of tree species across strong environmental gradients, in a situation where dispersal into ‘inappropriate’ habitat should not be a rare event. Habitat had a weak influence on community structure, although species diversity was lower in the alluvium and peat habitats. Association tests based on two randomization models (spatially independent and explicit) were used to examine habitat distribution of 55 ‘common’ and 142 ‘frequent’ taxa. The general patterns were similar in the two models but the interpretation of specific patterns depended greatly on assumptions about dispersal ability. A majority (67%) of the common species was significantly associated with a single habitat, while few were restricted to one habitat. A small proportion (16%) of the species appear to be habitat generalists. The peat habitat had the most profound effect on species distribution. Overall, a large amount of variation was found in the degree of habitat specificity, even within speciose groups. No obvious evolutionary or ecological correlates with degree of habitat specificity were found. These results suggest that a mixture of stochastic and deterministic processes determine species distribution even across strong environmental gradients.  相似文献   

13.
Bird communities in Tropical forests have high rate of rare species, but only recently some studies suggested their disproportional role for the overall functional diversity. We investigated data from bird communities monitored annually using point counts over ten years in Iguassu National Park, that is a large and protected area in the southern portion of the Atlantic Forest in Brazil. We aimed (1) to determine the rare and dominant species in the community based on their abundance over time; (2) to evaluate the impact of each class of rarity on the overall functional volume of the community; (3) to investigate the pattern of occupancy of the trait space filled by each dominance class, and (4) to assess the disparity in functional trait composition between classes of rarity. We defined dominant, intermediate, and rare species in communities using cluster analysis and data of relative abundance of species in five sections of 1-km in the forest interior. The number of clusters was defined in accordance with the silhouette criterion measures of cohesion and separation that range from −1 to 1, with values > 0.5 indicating high-quality clusters. Among total 138 bird species recorded, 107 were rare, 26 intermediates, and 5 dominants. Our data corroborate a functional disproportional importance of rare bird species in the community considering the functional space (FRic), but functional dispersion (FDis) was not significantly different between the rare and intermediate species. In fact, there is a large overlap of the functional volume occupied by rare in relation to dominant/intermediate species. The niche space occupied by rare species covers most of the space occupied by intermediate and dominant species. The low representativeness of functional turnover indicates that few functions are unique to the classes of higher dominance. Our data suggest the importance of rare bird species to the overall functional diversity but also highlights the potential use of dominants/intermediates species as indicators to select important forests areas for conservation, as certain forest fragments. Through these most abundant species it would be possible to assess which functions are heaviest in abundance, becoming core functions, in the context of each independent forest fragment.  相似文献   

14.
Species that are affected by climatic variations can undergo modification in range and/or abundance. Knowing how individuals or species occupy their habitat is essential to understand how species use their environment, and detecting variations that might affect this use can be determinant in species management. Hierarchical modeling is regularly used to assess for occupancy rate (i.e. proportion of patches occupied in a region), particularly when it is required to consider detectability-related issues. The present study is the first application of the conditional model presented in Dupuis et al. (Biometrics 2010), which is applied in the case of a heterogeneous area that might be divided into homogeneous sub-areas. Their approach is used to study the impact of three consecutive particularly cold winters on a selected set of bird species in a forest of southern France in the context of available prior information on birds detectability. We examined a limited range of factors that might influence the response of some bird species to climate. We considered the case of sedentary, partially migrating and migrating species. We also assessed if the biogeographical origins of the different species affect their occupancy rates. Globally, changes in occupancy rates between 1985 and 1987 indicates for the first time a continentalization of the regional forest fauna, reflected by the expansion of Palearctic and Turkestano-European faunistic type species, with depletion or extinction of European, Turkestano-Mediterranean and Mediterranean sedentary species. We have also shown the importance of prior information.  相似文献   

15.
Urban areas are expanding rapidly, but a few native species have successfully colonized them. The processes underlying such colonization events are poorly understood. Using the blackbird Turdus merula, a former forest specialist that is now one of the most common urban birds in its range, we provide the first assessment of two contrasting urban colonization models. First, that urbanization occurred independently. Second, that following initial urbanization, urban-adapted individuals colonized other urban areas in a leapfrog manner. Previous analyses of spatial patterns in the timing of blackbird urbanization, and experimental introductions of urban and rural blackbirds to uncolonized cities, suggest that the leapfrog model is likely to apply. We found that, across the western Palaearctic, urban blackbird populations contain less genetic diversity than rural ones, urban populations are more strongly differentiated from each other than from rural populations and assignment tests support a rural source population for most urban individuals. In combination, these results provide much stronger support for the independent urbanization model than the leapfrog one. If the former model predominates, colonization of multiple urban centres will be particularly difficult when urbanization requires genetic adaptations, having implications for urban species diversity.  相似文献   

16.
Pollen immigration can offset the effects of genetic drift and inbreeding in small populations. To understand the genetic consequences of forest fragmentation, estimates of pollen flow into remnant fragments are essential. Such estimates are straightforward for plants with singly sired, multiseeded fruits, since the pollen donor genotype for each fruit can be unambiguously reconstructed through full-sib genealogical analyses. Allozyme analyses were used to estimate pollen donor numbers from the progeny of fruits of the tropical dry forest tree Enterolobium cyclocarpum in a small (9.8 ha) fragmented population (N = 11) over three reproductive seasons (1994, 1995, and 1996). These analyses indicate that each tree receives pollen from many pollen donors. When data are pooled for the site, estimated maximum pollen donor pool sizes in all years exceed the number of individuals (56) in the 227 ha study area. Although unidentified pollen donors may be located as close as 250 m to the study trees, the number of unidentified pollen donors indicates that individuals in this forest fragment are part of a large network of reproductively active individuals.  相似文献   

17.
We examined hepatic cytochrome P450 activity in wild and hand-reared grey partridges (Perdix perdix), capercaillies (Tetrao urogallus) and ring-necked pheasants (Phasianus colchicus), as well as the enzyme activity in a variety of tissues of hand-reared Japanese quails (Coturnix coturnix japonica) and pigeons (Columba livia). Post-mortem decrease in hepatic enzyme activity in the grey partridge was measured. Hepatic 7-ethoxyresorufin-O-deethylase activity was similar in wild and hand-reared grey partridges and pheasants, but the activity was significantly lower in wild than in hand-reared capercaillies, probably resulting from their phenolic-rich diet. In the tissues of both quails and pigeons 7-ethoxycoumarin-O-deethylase exhibited the highest and 7-pentoxyresorufin-O-deethylase the lowest activity. Hepatic enzyme activity was significantly higher than that in other tissues. In the small intestine some activity could be found, reflecting some intestinal detoxication capacity. Enzyme activity decreased by 34-69% during the 30-min sampling period, which confirmed the importance of equalising sampling time to obtain comparable data. Because the hand-reared birds in this study were fed the same commercial diets, we assumed that the enzyme activity values detected reflect species differences without any induction by dietary secondary compounds.  相似文献   

18.
Tropical forests worldwide are being fragmented at a rapid rate, causing a tremendous loss of biodiversity. Determining the impacts of forest disturbance and fragmentation on tropical biotas is therefore a central goal of conservation biology. We focused on bird communities in the interior (>100 m from forest edge) of forest fragments (300, 600, and 1200 ha) in the lowlands of Papua New Guinea and compared them with those in continuous forest. We surveyed bird communities using point counts, mist‐netting, and random walks, and measured habitat and microclimate characteristics at each site. We also surveyed leaf‐dwelling arthropods, butterflies, and ants, and obtained diet samples from birds to examine food availability and food preferences. We recorded significantly fewer bird species per point in the 300‐ha forest fragment than in other study sites. Overall, we recorded 80, 84, and 88 species, respectively, in forest fragments, and 102 in continuous forest. Frugivores (especially large frugivores) and insectivores had lower species richness in forest fragments than continuous forest. Our results did not support the food scarcity hypothesis, that is, the decline of insectivorous birds in forest fragments is caused by an impoverished invertebrate prey base. We also found no significant differences among forest fragments and continuous forest in microclimates of forest interiors. Rather, we found that microhabitats preferred by sensitive birds (i.e., 30% of species with the strongest preferences for continuous forest) were less common in forest fragments (19%–31% of points) than in continuous forest (86% of points). Our results suggest that changes in microhabitats may make forest fragments unsuitable for sensitive species. However, limited dispersal capabilities could also make some species of birds less likely to disperse and occupy fragments. In addition, impoverished food resources, size of the forest fragment, or hunting pressure could contribute to the absence of large frugivorous birds in forest fragments. The forest fragments in our study, preserved as village‐based protected areas, were not large enough to sustain the bird communities found in continuous forest. However, because these fragments still contained numerous bird species, preservation of such areas can be an important component of management strategies to conserve rainforests and birds in Papua New Guinea.  相似文献   

19.
Considering the high biodiversity and conservation concerns of the tropical dry forest, this study aim is to predict and evaluate the potential and current distributions of twelve species of endemic birds which distribute along the western slope of Mexico. The main goal is to evaluate altogether different methods for predicting actual species distribution models (ADMs) of the twelve species including the identification of key environmental potential limiting factors. ADMs for twelve endemic Mexican birds were generated and validated by means of applying: (1) three widely used species niche modeling approaches (ENFA, Garp, and Maxent); (2) two thresholding methods, based on ROC curves and Kappa Index, for transforming continuous models to presence/absence (binary) models; (3) documented habitat–species associations for reducing species potential distribution models (PDMs); and (4) field occurrence data for validating final ADMs. Binary PDMs' predicted areas seemed overestimated, while ADMs looked drastically reduced and fragmented because of the approach taken for eliminating those predicted areas which were documented as unsuitable habitat types for individual species. Results indicated that both thresholding methods generated similar threshold values for species modeled by each of the three species distribution modeling algorithms (SDMAs). A Wilcoxon signed‐rank test, however, showed that Kappa values were generally higher than ROC curve for species modeled by ENFA and Maxent, while for Garp models there were no significant differences. Prediction success (e.g., true presences percentage) obtained from field occurrence data revealed a range of 50%–82% among the 12 species. The three modeling approaches applied enabled to test the application of two thresholding methods for transforming continuous to binary (presence/absence) models. The use of documented habitat preferences resulted in drastic reductions and fragmentation of PDMs. However, ADMs predictive success rate, tested using field species occurrence data, varied between 50 and 82%.  相似文献   

20.
Many areas in Europe are dominated by agricultural land use, and as a consequence, many typical forest plant species suffer from habitat loss and fragmentation. Hedgerows, one of the common elements of rural landscapes, have been considered as potential refuges for these species. The main objective of this study was to examine whether forests and hedgerows differ in environmental conditions, and whether important life-history attributes of the populations differ between the two habitat types. We selected five species commonly found in the region in both forests and hedgerows (Adoxa moschatellina, Anemone nemorosa, Circaea lutetiana, Polygonatum multiflorum and Stellaria holostea), and sampled data on 10 populations of each species in each habitat type, including measurements of light and various soil factors. Hedgerows had higher relative light availability and tended to have higher soil nutrient contents and lower soil water values than forests. The comparison of plant performance values between habitat types did not show consistent patterns across species. Anemone and Polygonatum performed equally well in hedgerows and forests, whereas Stellaria appeared to have a higher fitness in hedgerows. In contrast, Circaea showed a higher reproduction under forest conditions. For Adoxa, the results were somewhat contradictory: whereas the reproductive output of this species was higher in forests, population density was higher in hedgerows. The abiotic factors most closely related to the performance values were relative light and soil water availability. The majority of plant performance values did not differ between hedgerows and forests. We therefore conclude that the tested forest species are capable of growing also in hedgerows and will survive equally well in forest and its “surrogate” habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号