首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypotheses for divergence and speciation in rainforests generally fall into two categories: those emphasizing the role of geographic isolation and those emphasizing the role of divergent selection along gradients. While a majority of studies have attempted to infer mechanisms based on the pattern of species richness and congruence of geographic boundaries, relatively few have tried to simultaneously test alternative hypotheses for diversification. Here we discuss four examples, taken from our work on diversification of tropical rainforest vertebrates, in which we examine patterns of genetic and morphological variation within and between biogeographic regions to address two alternative hypotheses. By estimating morphological divergence between geographically contiguous and isolated populations under similar and different ecological conditions, we attempt to evaluate the relative roles of geographic isolation and natural selection in population divergence. Results suggest that natural selection, even in the presence of appreciable gene flow, can result in morphological divergence that is greater than that found between populations isolated for millions of years and, in some cases, even greater than that found between congeneric, but distinct, species. The relatively small phenotypic divergence that occurs among long-term geographic isolates in similar habitats suggests that morphological divergence via drift may be negligible and/or that selection is acting to produce similar phenotypes in populations occupying similar habitats. Our results demonstrate that significant phenotypic divergence: (1) is not necessarily coupled with divergence in neutral molecular markers; and (2) can occur without geographic isolation in the presence of gene flow.  相似文献   

2.
From Darwin''s study of the Galapagos and Wallace''s study of Indonesia, islands have played an important role in evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique. Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence. The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the paucity of anole species in the Lesser Antilles compared to the Greater Antilles.  相似文献   

3.
Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species'' distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species'' paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.  相似文献   

4.
We present the outcome of a century of post-bottleneck isolation of a long-lived species, the little spotted kiwi (Apteryx owenii, LSK) and demonstrate that profound genetic consequences can result from protecting few individuals in isolation. LSK were saved from extinction by translocation of five birds from South Island, New Zealand to Kapiti Island 100 years ago. The Kapiti population now numbers some 1200 birds and provides founders for new populations. We used 15 microsatellite loci to compare genetic variation among Kapiti LSK and the populations of Red Mercury, Tiritiri Matangi and Long Islands that were founded with birds from Kapiti. Two LSK native to D''Urville Island were also placed on Long Island. We found extremely low genetic variation and signatures of acute and recent genetic bottleneck effects in all four populations, indicating that LSK have survived multiple genetic bottlenecks. The Long Island population appears to have arisen from a single mating pair from Kapiti, suggesting there is no genetic contribution from D''Urville birds among extant LSK. The Ne/NC ratio of Kapiti Island LSK (0.03) is exceptionally low for terrestrial vertebrates and suggests that genetic diversity might still be eroding in this population, despite its large census size.  相似文献   

5.
E Luquet  J-P Léna  C Miaud  S Plénet 《Heredity》2015,114(1):69-79
Variation in the environment can induce different patterns of genetic and phenotypic differentiation among populations. Both neutral processes and selection can influence phenotypic differentiation. Altitudinal phenotypic variation is of particular interest in disentangling the interplay between neutral processes and selection in the dynamics of local adaptation processes but remains little explored. We conducted a common garden experiment to study the phenotypic divergence in larval life-history traits among nine populations of the common toad (Bufo bufo) along an altitudinal gradient in France. We further used correlation among population pairwise estimates of quantitative trait (QST) and neutral genetic divergence (FST from neutral microsatellite markers), as well as altitudinal difference, to estimate the relative role of divergent selection and neutral genetic processes in phenotypic divergence. We provided evidence for a neutral genetic differentiation resulting from both isolation by distance and difference in altitude. We found evidence for phenotypic divergence along the altitudinal gradient (faster development, lower growth rate and smaller metamorphic size). The correlation between pairwise QSTs–FSTs and altitude differences suggested that this phenotypic differentiation was most likely driven by altitude-mediated selection rather than by neutral genetic processes. Moreover, we found different divergence patterns for larval traits, suggesting that different selective agents may act on these traits and/or selection on one trait may constrain the evolution on another through genetic correlation. Our study highlighted the need to design more integrative studies on the common toad to unravel the underlying processes of phenotypic divergence and its selective agents in the context of environmental clines.  相似文献   

6.
Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes.  相似文献   

7.
Population genetic analyses of species inhabiting fragmented landscapes are essential tools for conservation. Occasionally, analyses of fragmented populations find no evidence of isolation, even though a barrier to dispersal is apparent. In some cases, not enough time may have passed to observe divergence due to genetic drift, a problem particularly relevant for long‐lived species with overlapping generations. Failing to consider this quality during population structure analyses could result in incorrect conclusions about the impact of fragmentation on the species. We designed a model to explore how lifespan and population size influence perceived population structure of isolated populations over time. This iterative model tracked how simulated populations of variable lifespan and population size were affected by drift alone, using a freshwater mussel, Quadrula quadrula (mapleleaf), as a model system. In addition to exhibiting dramatic lifespan variability among species, mussels are also highly imperiled and exhibit fragmentation by dams throughout the range of many species. Results indicated that, unless population size was small (<50 individuals) or lifespan short (<22 years), observing genetic divergence among populations was unlikely. Even if wild populations are isolated, observing population structure in long‐lived mussels from modern damming practices is unlikely because it takes longer for population structure to develop in these species than most North American dams have existed. Larger population sizes and longer lifespans increase the time needed for significant divergence to occur. This study helps illuminate the factors that influence genetic responses by populations to isolation and provides a useful model for conservation‐oriented research.  相似文献   

8.
Reduction in population size and local extinctions have been reported for the yellow-bellied toad, Bombina variegata, but the genetic impact of this is not yet known. In this study, we genotyped 200 individuals, using mtDNA cytochrome b and 11 nuclear microsatellites. We investigated fine-scale population structure and tested for genetic signatures of historical and recent population decline, using several statistical approaches, including likelihood methods and approximate Bayesian computation. Five major genetically divergent groups were found, largely corresponding to geography but with a clear exception of high genetic isolation in a highly touristic area. The effective sizes in the last few generations, as estimated from the random association among markers, never exceeded a few dozen of individuals. Our most important result is that several analyses converge in suggesting that genetic variation was shaped in all groups by a 7- to 45-fold demographic decline, which occurred between a few hundred and a few 1000 years ago. Remarkably, only weak evidence supports recent genetic impact related to human activities. We believe that the alpine B. variegata populations should be monitored and protected to stop their recent decline and to prevent local extinctions, with highest priority given to genetically isolated populations. Nonetheless, current genetic variation pattern, being mostly shaped in earlier times, suggests that complete recovery can be achieved. In general, our study is an example of how the potential for recovery should be inferred even under the co-occurrence of population decline, low genetic variation, and genetic bottleneck signals.  相似文献   

9.
The process of ecological speciation drives the evolution of locally adapted and reproductively isolated populations in response to divergent natural selection. In Southern Mexico, several lineages of the freshwater fish species of the genus Poecilia have independently colonized toxic, hydrogen sulfide-rich springs. Even though ecological speciation processes are increasingly well understood in this system, aligning the taxonomy of these fish with evolutionary processes has lagged behind. While some sulfide spring populations are classified as ecotypes of Poecilia mexicana, others, like P. sulphuraria, have been described as highly endemic species. Our study particularly focused on elucidating the taxonomy of the long described sulfide spring endemic, Poecilia thermalis Steindachner 1863, and investigates if similar evolutionary patterns of phenotypic trait divergence and reproductive isolation are present as observed in other sulfidic species of Poecilia. We applied a geometric morphometric approach to assess body shape similarity to other sulfidic and non-sulfidic fish of the genus Poecilia. We also conducted phylogenetic and population genetic analyses to establish the phylogenetic relationships of P. thermalis and used a population genetic approach to determine levels of gene flow among Poecilia from sulfidic and non-sulfidic sites. Our results indicate that P. thermalis'' body shape has evolved in convergence with other sulfide spring populations in the genus. Phylogenetic analyses placed P. thermalis as most closely related to one population of P. sulphuraria, and population genetic analyses demonstrated that P. thermalis is genetically isolated from both P. mexicana ecotypes and P. sulphuraria. Based on these findings, we make taxonomic recommendations for P. thermalis. Overall, our study verifies the role of hydrogen sulfide as a main factor shaping convergent, phenotypic evolution and the emergence of reproductive isolation between Poecilia populations residing in adjacent sulfidic and non-sulfidic environments.  相似文献   

10.
Wild pigs (Sus scrofa) are the most widely distributed invasive wild ungulate in the United States, yet the factors that influence wild pig dispersal and colonization at the regional level are poorly understood. Our objective was to use a population genetic approach to describe patterns of dispersal and colonization among populations to gain a greater understanding of the invasion process contributing to the expansion of this species. We used 52 microsatellite loci to produce individual genotypes for 482 swine sampled at 39 locations between 2014 and 2016. Our data revealed the existence of genetically distinct subpopulations (F ST  = 0.1170, p < 0.05). We found evidence of both fine-scale subdivision among the sampling locations, as well as evidence of long term genetic isolation. Several locations exhibited significant admixture (interbreeding) suggesting frequent mixing of individuals among locations; up to 14% of animals were immigrants from other populations. This pattern of admixture suggested successive rounds of human-assisted translocation and subsequent expansion across Florida. We also found evidence of genetically distinct populations that were isolated from nearby populations, suggesting recent introduction by humans. In addition, proximity to wild pig holding facilities was associated with higher migration rates and admixture, likely due to the escape or release of animals. Taken together, these results suggest that human-assisted movement plays a major role in the ecology and rapid population growth of wild pigs in Florida.  相似文献   

11.
The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species'' climatic niche and subsequent decline in population size.  相似文献   

12.
Nucleotide sequence data from a segment of the mitochondrial cytochrome b (Cyt b ) gene were used to infer demographic history and examine conditions that may have led to speciation in the Cortez bonefish ( Albula sp. A) in the Gulf of California, Mexico, a currently undescribed species of bonefish in the Albula vulpes complex. Analysis of molecular variance in 39 individuals collected from three localities along the eastern gulf coast, over c. 850 km, revealed a lack of population structure among localities (overall Φ ST=−0·015), with 100% of the genetic variation distributed within populations. Analysis of combined sequences from these individuals using neutrality tests and the mismatch distribution provided evidence of a population expansion dating to the Pleistocene. The population expansion was supported by maximum likelihood estimates of changes in long-term female effective population size ( N ef). A molecular clock estimate of divergence, provisionally calibrated for the Cyt b gene in Albula , indicates that Albula sp. A and its sister species in the eastern Pacific, Albula esuncula , diverged from a common ancestor c. 5·0–8·8 million years ago. This date is about the time the Baja California peninsula separated from mainland Mexico during the formation of the Gulf of California. Oceanographic and ecological changes associated with the opening of the gulf likely provided conditions favourable for adaptive radiation and reproductive isolation, ultimately resulting in the allopatric formation of two separate lineages. The co-occurrence of Albula sp. A and A. esuncula found today in the coastal Pacific waters of northern Mexico is most probably the result of secondary contact after speciation.  相似文献   

13.
Habitat fragmentation decreases plant population sizes and increases spatial isolation, which hampers the exchange of seeds and pollen between fragmented populations. This may result in decreased population viability. We compared the effects of population size and isolation on the reproductive success of two orchid species, Gymnadenia conopsea (nectar-producing) and Orchis mascula (nectarless) growing in highly fragmented calcareous grassland in southern Belgium. We expected that the nectar-producing species would be more susceptible to the negative reproductive consequences of habitat fragmentation compared to the nectarless species. Nectar production has been associated with increased geitonogamous pollination and, therefore, with lower seed viability. Our results show that seed viability increased with increasing population size in O. mascula, whereas it was always low in G. conopsea, even in large populations. In contrast, percentage fruit set was positively related to population size in the nectar-producing G. conopsea, but no such effect was observed in the nectarless O. mascula, where fruit set was low even in large populations. Population isolation was not related to reproductive success for either species. Our results suggest that even in large populations, where pollinators are expected to be more abundant, increased geitonogamous pollination reduces seed viability in the nectar-producing G. conopsea. In contrast, seed viability in O. mascula seems to benefit from increased pollinator availability in larger populations. For the latter species, however, fruit set remains low, even in large populations, compared to G. conopsea. This may be explained by the relatively low attractiveness of nectarless orchid species for pollinators. Our results indicate that small population size may negatively influence reproductive success in both nectarless and nectar-producing orchids by reducing seed viability and fruit set, respectively.  相似文献   

14.
We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.  相似文献   

15.
Species may often exhibit geographic variation in population genetic structure due to contemporary and historical variation in population size and gene flow. Here, we test the predictions that populations on the margins of a species' distribution contain less genetic variation and are more differentiated than populations towards the core of the range by comparing patterns of genetic variation at five microsatellite loci between disjunct and core populations of the perennial, allohexaploid herb Geum triflorum. We sampled nine populations isolated on alvar habitat within the eastern Great Lakes region in North America, habitats that include disjunct populations of several plant species, and compared these to 16 populations sampled from prairie habitat throughout the core of the species' distribution in midwestern Canada and the USA. Alvar populations exhibited much lower within-population diversity and contained only a subset of alleles found in prairie populations. We detected isolation by distance across the species' range and within alvar and prairie regions separately. As predicted, genetic differentiation was higher among alvar populations than among prairie populations, even after controlling for the geographic distance between sampled populations. Low diversity and high differentiation can be accounted for by the greater contemporary spatial isolation of alvar populations. However, the genetic structure of alvar populations may also have been influenced by postglacial range expansion and contraction. Our results are consistent with alvar populations being founded during an expansion of prairie habitat during the warmer, hypsithermal period approximately 5000 bp and subsequently becoming stranded on isolated alvar habitat as the climate grew cooler and wetter.  相似文献   

16.
The relative importance of ecological selection and geographical isolation in promoting and constraining genetic and phenotypic differentiation among populations is not always obvious. Interacting with divergent selection, restricted opportunity for gene flow may in some cases be as much a cause as a consequence of adaptation, with the latter being a hallmark of ecological speciation. Ecological speciation is well studied in parts of the native range of the three‐spined stickleback. Here, we study this process in a recently invaded part of its range. Switzerland was colonized within the past 140 years from at least three different colonization events involving different stickleback lineages. They now occupy diverse habitats, ranging from small streams to the pelagic zone of large lakes. We use replicated systems of parapatric lake and stream populations, some of which trace their origins to different invasive lineages, to ask (i) whether phenotypic divergence occurred among populations inhabiting distinct habitats, (ii) whether trajectories of phenotypic divergence follow predictable parallel patterns and (iii) whether gene flow constrains divergent adaptation or vice versa. We find consistent phenotypic divergence between populations occupying distinct habitats. This involves parallel evolution in several traits with known ecological relevance in independent evolutionary lineages. Adaptive divergence supersedes homogenizing gene flow even at a small spatial scale. We find evidence that adaptive phenotypic divergence places constraints on gene flow over and above that imposed by geographical distance, signalling the early onset of ecological speciation.  相似文献   

17.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

18.
Although fragmented rainforest environments represent hotspots for invertebrate biodiversity, few genetic studies have been conducted on rainforest invertebrates. Thus, it is not known if invertebrate species in rainforests are highly genetically fragmented, with the potential for populations to show divergent selection responses, or if there are low levels of gene flow sufficient to maintain genetic homogeneity among fragmented populations. Here we use microsatellite markers and DNA sequences from the mitochondrial ND5 locus to investigate genetic differences among Drosophila birchii populations from tropical rainforests in Queensland, Australia. As found in a previous study, mitochondrial DNA diversity was low with no evidence for population differentiation among rainforest fragments. The pattern of mitochondrial haplotype variation was consistent with D. birchii having undergone substantial past population growth. Levels of nuclear genetic variation were high in all populations while F(ST) values were very low, even for flies from geographically isolated areas of rainforest. No significant differentiation was observed between populations on either side of the Burdekin Gap (a long-term dry corridor), although there was evidence for higher gene diversity in low-latitude populations. Spatial autocorrelation coefficients were low and did not differ significantly from random, except for one locus which revealed a clinal-like pattern. Comparisons of microsatellite differentiation contrasted with previously established clinal patterns in quantitative traits in D. birchii, and indicate that the patterns in quantitative traits are likely to be due to selection. These results suggest moderate gene flow in D. birchii over large distances. Limited population structure in this species appears to be due to recent range expansions or cycles of local extinctions followed by recolonizations/expansions. Nevertheless, patterns of local adaptation have developed in D. birchii that may result in populations showing different selection responses when faced with environmental change.  相似文献   

19.
Evolutionary responses to the long-term exploitation of individuals from a population may include reduced growth rate, age at maturation, body size and productivity. Theoretical models suggest that these genetic changes may be slow or impossible to reverse but rigorous empirical evidence is lacking. Here, we provide the first empirical demonstration of a genetically based reversal of fishing-induced evolution. We subjected six populations of silverside fish (Menidia menidia) to three forms of size-selective fishing for five generations, thereby generating twofold differences among populations in mean weight and yield (biomass) at harvest. This was followed by an additional five generations during which size-selective harvest was halted. We found that evolutionary changes were reversible. Populations evolving smaller body size when subjected to size-selective fishing displayed a slow but significant increase in size when fishing ceased. Neither phenotypic variance in size nor juvenile survival was reduced by the initial period of selective fishing, suggesting that sufficient genetic variation remained to allow recovery. By linear extrapolation, we predict full recovery in about 12 generations, although the rate of recovery may taper off near convergence. The recovery rate in any given wild population will also depend on other agents of selection determined by the specifics of life history and environment. By contrast, populations that in the first five generations evolved larger size and yield showed little evidence of reversal. These results show that populations have an intrinsic capacity to recover genetically from harmful evolutionary changes caused by fishing, even without extrinsic factors that reverse the selection gradient. However, harvested species typically have generation times of 3–7 years, so recovery may take decades. Hence, the need to account for evolution in managing fisheries remains.  相似文献   

20.
Galápagos hawks (Buteo galapagoensis) are one of the most inbred bird species in the world, living in small, isolated island populations. We used mitochondrial sequence and nuclear minisatellite data to describe relationships among Galápagos hawk populations and their colonization history. We sampled 10 populations (encompassing the entire current species range of nine islands and one extirpated population), as well as the Galápagos hawk's closest mainland relative, the Swainson's hawk (B. swainsoni). There was little sequence divergence between Galápagos and Swainson's hawks (only 0.42% over almost 3kb of data), indicating that the hawks colonized Galápagos very recently, likely less than 300,000 years ago, making them the most recent arrivals of the studied taxa. There were only seven, closely related Galápagos hawk haplotypes, with most populations being monomorphic. The mitochondrial and minisatellite data together indicated a general pattern of rapid population expansion followed by genetic isolation of hawk breeding populations. The recent arrival, genetic isolation, and phenotypic differentiation among populations suggest that the Galápagos hawk, a rather new species itself, is in the earliest stages of further divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号