首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We documented changes in the abundance and distribution patterns of tunic cells involved in the allorecognition response of the colonial aplousobranch Didemnum vexillum, whose zooids do not share a common vascular system. A histological examination of the fusion zone of isogeneic (CIAs) and allogeneic (CAAs) fused colony assays revealed that tunic cuticles were rapidly regenerated. The underlying tunic matrix fused readily in all assays and controls. We identified four different types of tunic cells. Phagocytic cells represented the most abundant cell type in allogeneic fusions, followed by morula cells. These cells were more abundant at the immediate fusion junction than at 120 μm or 240 μm from the junction, most likely because they mediate the allorecognition reaction. Elongated filopodial cells also were present, although only at very low abundances, and a layer of bladder cells was located immediately below the cuticle. Our results provide quantitative evidence for the involvement of tunic cells in the allorecognition response of a highly invasive ascidian.  相似文献   

2.
Abstract. Cellular components of the tunic were histologically examined in 3 pyrosome species representing all 3 genera of the order: Pyrosoma atlanticum, Pyrosomella verticillata , and Pyrostremma spinosum . Three cell types are distributed in the tunic. Tunic amebocytes, irregularly shaped and motile, often contain granules and/or phagosomes. Spherical tunic cells contain many round vesicles with eosinophilic and acidic materials. Tunic net cells form a cellular network in which their long filopodia connect with one another. The net cells are densely distributed just beneath the tunic surface lining the common cloacal cavity and may produce tension to maintain the colony shape. The presence of net cells suggests a phylogenetic relationship between pyrosomes and some aplousobranch ascidians. Test fibers are multicellular cords that run in the tunic and connect the zooids. In P. atlanticum , they are attached to they are attached to the epidermal cells of the zooids, and transverse cloacal muscles are attached to the other (proximal) side of the epidermal cells. The test fibers may mediate coordination of the zooids and control muscle contraction.  相似文献   

3.
Fusion to form a chimera has been documented in many marine invertebrate taxa, including poriferans, cnidarians, bryozoans, and colonial ascidians. Allogenic interactions in chimeric ascidian colonies vary widely across taxonomic groups but are poorly characterized in the invasive colonial ascidian Didemnum vexillum. The moderate level of discrimination expressed in the fusion–rejection response of D. vexillum suggests that there is some integration of cells beyond the fusion line in a chimeric colony. We tracked the shifts in representation of microsatellite alleles between fused colonies of D. vexillum to elucidate the extent of genotypic integration in fused colonies and the patterns of changes to the genotypic composition of colonies immediately following chimera formation. By genotyping colonies before and after fusion, we found that allogeneic fusion in D. vexillum may lead to genotypic changes beyond the visible fusion line. Alleles from one colony were found in multiple tissue samples in the chimera 7–10 days after fusion had occurred. In some instances, alleles that were in a single colony prior to fusion were lost following fusion. We observed multiple patterns of allelic change, including both the unidirectional transfer and reciprocal exchange of alleles between fused colonies. Our findings suggest that tissue or cells are exchanged following allogeneic fusion between colonies of D. vexillum and that the genotypic composition of chimeric colonies may be fluid.  相似文献   

4.
Many shallow water subtidal habitats in Massachusetts, USA have recently been invaded by five non-indigenous ascidian species: Ascidiella aspersa, Botrylloides violaceus, Didemnum sp., Diplosoma listerianum and Styela clava. This study examined the effects of seawater temperature, as a proxy for climate change, on B. violaceus and D. listerianum and the impact these ascidians have on native sessile fouling communities. Field experiments were conducted over a four month period at two locations (Lynn and Woods Hole, MA) to examine growth dynamics over regional thermal and geographic ranges. Invasive ascidians occupied as much as 80% of the primary substratum and accounted for the majority of species richness. B. violaceus and D. listerianum growth were similar at both study sites, but initial colony growth of D. listerianum was positively affected by temperature. B. violaceus and D. listerianum exhibited rapid two-week growth rates during the summer months with more rapid growth at the warmer Woods Hole site. Competition for space between B. violaceus and D. listerianum typically resulted in neutral borders between colonies. Overgrowth occurred if the colony of one species was disproportionably larger than the colony of the other species. Recruitment and growth of native species influenced the long-term composition of experimental communities more than the pre-seeding with B. violaceus or D. listerianum colonies. Elevated temperatures, however, increased initial growth of B. violaceus and D. listerianum and may have facilitated the species success to invade the communities during crucial periods of introduction. With projected global climate change, a rise in sea surface temperatures may exacerbate the cumulative impacts of invasions on benthic communities and facilitate the invasion of other non-native ascidian species.  相似文献   

5.

The zooids in colonial tunicates do not appear to be directly interconnected by nerves, but this has not prevented the evolution of coordinated behaviour in several groups. In Botryllus and other colonial styelid asci‐dians the endothelium lining the blood vessels is excitable and transmits action potentials from cell to cell via gap junctions. These signals mediate protective contractions of the zooids and synchronize contractions of the vascular ampullae. In didemnid ascidians such as Diplosoma a network of myocytes in the tunic serves to transmit excitation and to cause contractions of the cloacal apertures. Individual zooids of Pyrosoma protect themselves by closing their siphons and arresting their branchial cilia when stimulated. At the same time a flash of light is emitted. Neighbouring zooids sense the flash with their photoreceptors and respond in turn with protective responses and light emission. Protective responses thus spread by photic signalling and propagate from zooid to zooid through the colony in a saltatory manner. In chains of Salpafusifortnis, changes in the direction and/or speed of swimming are transmitted from zooid to zooid via adhesion plaques. When a zooid is stimulated, its body‐wall epithelium conducts action potentials to the plaque connecting it to the next zooid, exciting receptor neurons in that zooid. These receptors have sensory processes that bridge the gap between the two zooids. The sensory neurons so excited in the second zooid conduct impulses to the brain where they alter the motor output pattern, and at the same time generate epithelial action potentials that travel to the next zooid in line, where the same thing happens.

It is not clear why these unconventional signalling methods have evolved but the tunic may be an inhospitable environment for nerves, making conventional nervous links impossible.  相似文献   

6.
7.
Trididemnum miniatum is a colonial ascidian harboring the photosymbiotic prokaryote Prochloron sp. These bacterial cells are located in the tunic of the host animal. The present study revealed, by ultrastructural analysis, that the Prochloron cells were exclusively distributed and proliferated in the tunic. They were shown to be embedded in the tunic matrix and to have no direct contact with ascidian cells. Some tunic cells of the ascidians, however, did phagocytize and digest the symbiont. Round cell masses were sometimes found in the tunic and appeared to consist of disintegrating cyanobacterial cells. The thoracic epidermis of ascidian zooids was often digitated, and the epidermal cells extended microvilli into the tunic. Since there were no Prochloron cells in the alimentary tract of the ascidian zooids, the photosymbionts would not be considered part of the typical diet of the host ascidians. Thin layer chromatography showed that the symbionts possessed both chlorophyll a and b, while a 16S rRNA gene phylogeny supported the identification of the photosymbiont of T. miniatum as Prochloron sp.  相似文献   

8.
Recruitment patterns of sessile species often do not reflect the composition of the local propagule pool. This is, among other processes, attributed to the stimulation or inhibition of settlement by resident species. In an experimental study, we evaluated the effects of different densities of the ascidian Diplosoma listerianum on the settlement of the hydrozoan Obelia sp. For this, we monitored the cover of the dominant fouler Obelia sp. on vertically orientated PVC tiles, which were either bare or pre-seeded with two different densities (sparse or dense) of Diplosoma colonies, over the course of 8 weeks. The settlement tiles were deployed at two study sites in La Herradura Bay, Chile. The presence of D. listerianum enhanced the settlement or the growth or both of the colonial hydrozoan, but this effect disappeared within 4–8 weeks. Furthermore, we tested whether the initial enhancement of Obelia sp. by Diplosoma colonies goes back to the fact that larvae, which reject the ascidian tunic as a settlement substratum after a first contact, colonize nearby surfaces because of their limited mobility. However, we found no support for this assumption. We rather suggest that D. listerianum facilitated colonization indirectly by the accumulation of organic material in its vicinity and/or by its pumping activity. Initial resident-mediated enhancement of the hydrozoan was overridden by processes such as competition between later colonizers within the course of weeks and we could not detect any lasting effects of D. listerianum on the structure of the developing communities.  相似文献   

9.
Invasive ascidians are a growing concern for ecologists and natural resource managers, yet few studies have documented their short- and long-term temporal patterns of abundance. This study focuses on the invasion of the Gulf of Maine by the colonial ascidians Botryllus schlosseri, Botrylloides violaceus, Diplosoma listerianum and Didemnum sp. A. We examined the time of arrival and potential vectors for these four invasive ascidians using survey data (collected from 1969 onwards) and literature documentation. We also compared the dominance and seasonal patterns of abundance of these species using data from two identical panel studies; one conducted from 1979 to 1980, the other from 2003 to 2005. Didemnum and Botrylloides were most likely first introduced into the Damariscotta River, Maine in the early 1970's through oyster aquaculture while Botryllus and Diplosoma were probably transported by commercial and recreational vessels. The overall abundance of colonial ascidians has increased since 1979 and 1980. Botryllus was the only invasive colonial ascidian present during the 1979 to 1980 study and accounted for an average of 6.16% cover on panels. From 2003 to 2005, the more recently arrived colonial ascidians Botrylloides and Didemnum accounted for 7.38% and 2.08% cover respectively, while Botryllus covered only 1.16%. Our results reveal a shift in seasonal abundance between 1979 to 1980 and 2003 to 2004. In 1979 and 1980, colonial ascidians had the highest percent cover in fall and winter while in 2003 and 2005 they had highest percent cover in summer and fall. Seasonal patterns of space occupation by colonial ascidians were correlated with seasonal changes in seawater temperature.  相似文献   

10.
11.
SYNOPSIS. Colonies of the compound tunicate Botryllus show thecapacity for self—nonself discrimination by fusion betweenseparated pieces of the same colony and rejection between piecesof unrelated colonies. We have found that genes controllingthis colony specificity are similar to those which cause transplantrejection in the vertebrates. Like the loci within the vertebratemajor histocompatibility complex (MHC), Botryllus fusibility(or histocompatibility) genes are highly polymorphic. In Botryllus,the histocompatibility complex also controls self—sterility,and limits cross—fertilization between colonies sharinghistocompatibility alleles. The mouse MHC, the H-2 region, islinked to loci which also affect the frequencies of allelesat H-2 loci in mouse populations. Thus both systems containcharacters which could act to promote the heterozygous conditionat the linked histocompatibility loci. We suggest that suchlinked characters are responsible for the evolution of allogeneicpolymorphism in vertebrates (however currently maintained),and that tunicate fusibility loci may be the evolutionary precursorsof vertebrate MHC genes.  相似文献   

12.
The metabolic rate and its scaling relationship to colony size were studied in the colonial ascidian Botrylloides simodensis. The colonial metabolic rate, measured by the oxygen consumption rate (V(O2) in millilitres of O(2) per hour) and the colony mass (wet weight M(w) in grams) showed the allometric relationship (V(O2) = 0.0412 M(w)(0.799). The power coefficient was statistically not different from 0.75, the value for unitary organisms. The size of the zooids and the tunic volume fraction in a colony were kept constant irrespective of the colonial size. These results, together with the two-dimensional colonial shape, excluded shape factors and colonial composition as possible causes of allometry. Botryllid ascidians show a takeover state in which all the zooids of the parent generation in a colony degenerate and zooids of a new generation develop in unison. The media for connection between zooids such as a common drainage system and connecting vessels to the common vascular system experienced reconstruction. The metabolic rate during the takeover state was halved and was directly proportional to the colonial mass. The scaling thus changed from being allometric to isometric. The alteration in the scaling that was associated with the loss of the connection between the zooids strongly support the hypothesis that the allometry was derived from mutual interaction among the zooids. The applicability of this hypothesis to unitary organisms is discussed.  相似文献   

13.
SYNOPSIS. Our knowledge of ascidian genetics is reviewed. Thepaper is primarily concerned with the author's past and currentwork on the colonial species Bolryllus schlosseri. Five Mendelianloci account for most of its impressive polychromatism. Breedingexperiments have substantiated the hypothesis of a single multialleliclocus for each of three enzymes (MDH, SOD, PGI) suggested byelectrophoretic patterns. The nuclei of three linkage groupshave been revealed. Self—fertilization entails a severeinbreeding depression. A specific self, nonself recognition,expressed by fusion or repulsion of contacting colonies, occursin this species also. At variance with Botryllus primigenus,fusible colonies of B. schlosseri are completely interfertile.This has allowed a more direct genetic analysis of the phenomenon,confirming the alleged control by a single multiallelic locus.In order to fuse, the confronted colonies must share at leastone allele. Young buds grafted in the tunic after removal ofall the zooids develop a new colony at the host's expense onlyif donor and host are fusible. This means that fusibility andhistocompatibility are strictly correlated. Chimerical colonies,obtained either in this way or following the resorption of oneof two fused colonies, are now being investigated for theirrecognition specificity and electrophoretic pattern. Preliminarydata indicate that both can be durably altered, suggesting thatthe allogeneic cell populations are persistent and renewing.  相似文献   

14.
Allorecognition is the ability of an organism to differentiate self or close relatives from unrelated individuals. The best known applications of allorecognition are the prevention of inbreeding in hermaphroditic species (e.g., the self‐incompatibility [SI] systems in plants), the vertebrate immune response to foreign antigens mediated by MHC loci, and somatic fusion, where two genetically independent individuals physically join to become a chimera. In the few model systems where the loci governing allorecognition outcomes have been identified, the corresponding proteins have exhibited exceptional polymorphism. But information about the evolution of this polymorphism outside MHC is limited. We address this subject in the ascidian Botryllus schlosseri, where allorecognition outcomes are determined by a single locus, called FuHC (Fusion/HistoCompatibility). Molecular variation in FuHC is distributed almost entirely within populations, with very little evidence for differentiation among different populations. Mutation plays a larger role than recombination in the creation of FuHC polymorphism. A selection statistic, neutrality tests, and distribution of variation within and among different populations all provide evidence for selection acting on FuHC, but are not in agreement as to whether the selection is balancing or directional.  相似文献   

15.
Natural chimeras are commonly distributed in the wild, challenging the traditional paradigm for the advantages of genetically homogenous entities, where uniclonality prevents within-organism conflicts. This essay focuses on the last two-decade studies on chimerism in the cosmopolitan urochordate Botryllus schlosseri, enlightening and focusing the idea of multichimeras as a primary tool for fending off the pervasiveness of super parasitic germ lines. Interacting Botryllus colonies may fuse or reject each other based on allelic compatibility on a single highly polymorphic gene locus. After fusion and establishment of a chimera, a second tier of allorecognition is developed, expressed as genetically controlled morphological resorption of one of the chimeric partners. This is followed by the third tier of allorecognition where somatic and germ cell lineages parasitism are developed. Studies revealed a complex network of costs and few suggested benefits for the state of chimerism in botryllid ascidians. Two life history traits (diversification of allorecognition allele repertoire, colonial programmed lifespan) were considered as selected to combat the major cost of chimeric associated germ cell parasitism. Three other ecological traits (heterosis, settlement of kin larvae in aggregates, multichimerism) have been suggested as selected to enhance the existence of chimerism in botryllid ascidians. Recent results revealing a fine-tuning of the chimerical somatic genetic components in response to changes in environmental conditions are discussed. Results further elucidate the possible existence of multichimeras, each made of several genotypes. It is proposed that natural multichimeras form more stable and vigorous entities, depicting a unique way for domesticating consortia of selfish cells that may otherwise seriously threaten survivorship of the entity.  相似文献   

16.
The morphology and life history of a new species of the genus Botryllus belonging to the family Botryllidae are described in detail. This ascidian was collected from the stony shore in the cove near Shimoda Marine Research Center, University of Tsukuba (Shimoda, Shizuoka Prefecture, Japan). The ascidian colony was easily distinguished from colonies of other botryllids because it was very thin and bright pink in color. The arrangement of ovary and testis in this ascidian was the same as that in other species of the genus Botryllus. This ascidian was prolific, with 1-5 embryos on each side of a zooid, and the embryos of this ascidian developed in the peribranchial cavity without any brooding organs as in Botryllus scalaris. We observed the processes and features of the allorecognition reaction in colony specificity and found that allorejection occurred after fusion of the vascular system between two incompatible colonies. This manner of allorejection is also shown in B. scalaris and Botryllus delicatus; however, the reaction speed of allorejection is faster than that of B. delicatus and similar to that of B. scalaris. These results indicate that this ascidian might be closely related to B. scalaris.  相似文献   

17.
Saito Y  Okuyama M 《Zoological science》2003,20(9):1153-1161
The morphology and life history of a strange and unidentified botryllid ascidian were investigated. This ascidian was first collected from the stony shore of Ebisu Island in Shimoda, a city on Izu peninsula in central Japan. Unlike other botryllid ascidians, whose colonies are flat and smooth, this ascidian's colonies are rugged. In each colony, zooids are arranged into several oval systems, each of which has a thick part containing zooids and very thin parts that do not. The arrangement of ovary and testis in this species is the same as in other species of the genus Botryllus; the ovary is situated anterior to the testis. The embryo of this ascidian develops in the peribranchial cavity of its mother zooid without any brooding organs, as is the case with Botryllus scalaris and Botryllus puniceus. Meanwhile, the results of cut colony assay experiments did not show the existence of colony specificity in this ascidian. Even when two syngeneic colonies were brought into contact at their growing edges, none fused together. On the other hand, when two colonies were brought into contact with each other at their cut surfaces, they always fused into a single colony, regardless of their origin. Therefore, this species may be the only species that lacks colony specificity among the botryllids studied so far.  相似文献   

18.
Random amplified polymorphic DNA (RAPD) analysis was applied to individual modules (zooids) of a colonial ascidian to investigate the presence and extent of chimerism, the parabiotic association of different genetic entities. The technique proved to be rapid and efficient for distinguishing different genotypes present in a colony, and revealed genetic mosaicism in wild material, as well as in laboratory cultures following planned fusion. Approximately one-third of colonies in the natural population studied possessed multiple genotypes, presumably as the result of fusion of different colonies. Furthermore, individual zooids of different genetic origin often intermingled after colony fusion, spreading each genotype throughout a larger total area.  相似文献   

19.
Reversal of the bilateral asymmetry of the zooids was induced in a series of colonies of Botryllus schlosseri. Palleal buds from colonies with normal or reversed bilateral asymmetry were isolated in the early stages from the parental zooids and cultured in the vascularized tunic of the same colony or of another colony with opposite asymmetry. Vascular budding was induced in colonies with either type of asymmetry.The bud polarity was shown to depend on the vascularization; the test vessel entering the isolated palleal bud always causes the entrance point to become the posterior end of the developing zooid. On the contrary, the bilateral asymmetric type is predetermined in the bud primordium; the isolated palleal buds develop the type of asymmetry of their parents, even when grafted in the test of a colony with opposite asymmetry. Since the same was also true of the vascular buds, it is concluded that the information for the kind of bilateral asymmetry to be developed is conveyed by the epidermal envelope of the bud. The epidermis of the parental zooids influences the palleal buds, whereas the wall of the test vessels, epidermal extrusions of the zooids, influences the vascular buds.  相似文献   

20.
Trididemnum clinides is a multi-photosymbiotic ascidian that inhabits shallow coral reef lagoons. Three types of cyanobacteria are harboured in the tunic of the ascidian colony; of these, two are unicellular coccoid cyanobacteria and the other is a multicellular filamentous type. They also differ in ultrastructure and distribution patterns within the host tunic. Microspectrophotometric analysis revealed the composition of photosynthetic pigments in each photosymbiont. One of the coccoid types is yellowish-green and is distributed under the colony surface. This photosymbiont cell preferentially absorbs red and blue light, and therefore the dominant colour in the inner tunic is green. The other two types of coexisting photosymbionts contain the green-light-absorbing R-phycoerythrin as the major photosynthetic pigment; they exploit the wavelengths of light not used by the first type of photosymbiont. In T. clinides, the outer and inner photosymbionts in the tunic have different photosynthetic pigments, which adapt to each microhabitat, thereby sharing the incident light resources effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号