首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

2.
Considerable work in evolutionary biology has focused on the question of why sex persists. Both advantages to sex and constraints limiting a return to asexual reproduction are hypothesized to maintain sex once it evolves. Developmental constraints would limit asexual reproduction from a sexual species if it were difficult for females to switch from making eggs that do not develop without fertilization to making zygotes that are capable of developing in the absence of fertilization. Nauphoeta cinerea is an ovoviviparous cockroach in which some females are capable of switching from a sexual mode of reproduction to an asexual mode when isolated from males. Yet, while facultative parthenogenesis can occur in individuals, few females make the switch. Thus, this cockroach provides an ideal system for examining the potential role of developmental constraints in maintaining sex. Here we compare the cytogenetics and embryonic development of sexual and parthenogenetic offspring in N. cinerea. We find that deviations from normal ploidy levels are associated with abnormal development. All viable N. cinerea embryos exhibit typically hemimetabolous insect embryogenesis. Although there is no variation among embryos in development within a sexually produced clutch, we see extreme variation in asexually derived clutches. These results suggest that developmental constraints limit the success of asexual reproduction in this facultatively parthenogenetic cockroach. Our data further suggest that the specific constraint occurs in the switch from a meiotic mode of reproduction requiring fertilization to diploid zygotes that develop in the absence of fertilization.  相似文献   

3.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phylogeny, we show that all five parthenogens likely evolved spontaneously from sexually reproducing species, and that the sexual ancestor of one of the five parthenogens was probably of hybrid origin. The complete maintenance of heterozygosity between generations in the five parthenogens strongly suggests that eggs are produced by apomixis. Virgin females of the sexual species were also able to produce parthenogenetic offspring, but these females produced eggs by automixis. High heterozygosity levels stemming from conserved ancestral alleles in the parthenogens suggest, however, that automixis has not generated the current parthenogenetic Timema lineages but that apomixis appeared abruptly in several sexual species. A direct transition from sexual reproduction to (at least functional) apomixis results in a relatively high level of allelic diversity and high efficiency for parthenogenesis. Because both of these traits should positively affect the demographic success of asexual lineages, spontaneous apomixis may have contributed to the origin and maintenance of asexuality in Timema .  相似文献   

4.
Parthenogenesis is an asexual mode of reproduction that plays an important role in the evolution of sex, sociality, and reproduction strategies in insects. Some species of cockroach exhibit thelytoky, a type of parthenogenesis in which female offspring are produced without fertilization. However, the cytological and genetic mecha? nisms of parthenogenesis in cockroaches are not well understood. Here we provide the first molecular genetic evidence that cockroaches can reproduce through automixis. Using the American cockroach Periplaneta aniericana, we performed microsatellite analysis to investigate the genetic relationship between parthenogenetically produced nymphs and the parent virgin females, and found that all parthenogenetic offspring were homozygous for autosomal microsatellite markers, whereas the female parents were heterozygous. In addition, flow cytometry analysis revealed that the parthenogenetic offspring were diploid. Taken together, our results demonstrate that P. americana exhibits automixis-type thelytoky, in which diploidy is restored by gamete duplication or terminal fusion. These findings highlight the unique reproduction strategies of cockroaches, which are more varied than was previously recognized.  相似文献   

5.
Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species'' range, consistent with models of geographical parthenogenesis.  相似文献   

6.
One specialized environment that can influence development arises in the context of social interactions, including the environment contributed by a sexual partner during sexual reproduction. It is often difficult, however, to separate out the effect of mating (fertilization) from the effect of social environment. In the study reported here we examine the effect of social environment mediated by a pheromonal signal on the fertility and fecundity of the facultatively parthenogenetic cockroach Nauphoeta cinerea. By examining parthenogenetically reproducing females, we isolate the effects of social environment in the absence of mating or fertilization. Females exposed to male odors are more likely to produce parthenogenetic offspring. Further, increased exposure to the male pheromone increases the number of offspring produced. Variation in timing of reproduction is also dependent on the male. Thus, social environments are a mechanism by which males contribute to the development of their offspring, resulting in variation in development. This study illustrates the potential evolutionary importance of social environments in development, because a requirement for male-contributed environments may be a constraint to evolving asexual reproduction from a sexually reproducing species.  相似文献   

7.
Thelytokous (all-female producing) parthenogenesis, in some cases, involves reproductive advantages against obligate sexual reproduction. However, the completion of parthenogenesis takes multiple steps without the help of males, and thus preadaptation that meets those requirements will be an important factor for the evolution of parthenogenesis. The Japanese subterranean termite, Reticulitermes speratus, is known to have the ability of parthenogenetic colony foundation, where females that failed to mate with males found colonies cooperatively with partner females and reproduce by parthenogenesis. In this study, we compared the parthenogenetic ability and the colony initiation behavior among six Reticulitermes species in Japan. All species other than R. speratus were not able to reproduce parthenogenetically. Nevertheless, females of these species without the parthenogenetic ability performed homosexual female–female colony initiation and produced eggs without fertilization. In addition, in one species without parthenogenetic reproduction, R. kanmonensis, female–female pair initiated founding behavior as quickly as a heterosexual pair. These results suggest that female–female colony initiation and virgin egg-laying are predominant characters among the genus Reticulitermes and provide a preadaptive condition for parthenogenetic colony foundation in R. speratus.  相似文献   

8.
Evolution as a critical component of plankton dynamics   总被引:9,自引:0,他引:9  
Microevolution is typically ignored as a factor directly affecting ongoing population dynamics. We show here that density-dependent natural selection has a direct and measurable effect on a planktonic predator-prey interaction. We kept populations of Brachionus calyciflorus, a monogonont rotifer that exhibits cyclical parthenogenesis, in continuous flow-through cultures (chemostats) for more than 900 days. Initially, females frequently produced male offspring, especially at high population densities. We observed rapid evolution, however, towards low propensity to reproduce sexually, and by 750 days, reproduction had become entirely asexual. There was strong selection favouring asexual reproduction because, under the turbulent chemostat regime, males were unable to mate with females, produced no offspring, and so had zero fitness. In replicated chemostat experiments we found that this evolutionary process directly influenced the population dynamics. We observed very specific but reproducible plankton dynamics which are explained well by a mathematical model that explicitly includes evolution. This model accounts for both asexual and sexual reproduction and treats the propensity to reproduce sexually as a quantitative trait under selection. We suggest that a similar amalgam of ecological and evolutionary mechanisms may drive the dynamics of rapidly reproducing organisms in the wild.  相似文献   

9.
In this study, two parthenogenetic events within a family of the whitespotted bambooshark Chiloscyllium plagiosum are reported. A captive female produced multiple parthenogens. Unexpectedly, a single specimen of a total of nine parthenogens displayed external claspers characterizing the male sex in chondrichthyans. Upon dissection, internal sexual organs of this specimen were malformed or absent; however, the presence of claspers in this study challenges the as yet assumed sex determination system in this shark species. Even more remarkable was that one of the female parthenogens reproduced asexually again producing viable offspring. As far as is known, this is the first genetically confirmed evidence for second‐generation facultative parthenogenesis in vertebrates. These results support the evolutionary significance of parthenogenesis as an alternative to sexual reproduction.  相似文献   

10.
The reproductive mode of facultative parthenogens allows recessive mutations that accumulate during the asexual phase to be unmasked following sexual reproduction. Longer periods of asexual reproduction should increase the accumulation of deleterious mutations within individuals, reduce population-level genetic diversity via competition and increase the probability of mating among close relatives. Having documented that the investment in sexual reproduction differs among populations and clones of Daphnia pulicaria , we ask if this variation is predictive of the level of inbreeding depression across populations. In four lake populations that vary in sex investment, we raised multiple families (mother, field-produced daughter, laboratory-produced daughter) on high food and estimated the fitness reduction in both sexually produced offspring relative to the maternal genotype. Inbred individuals had lower fitness than their field-produced siblings. The magnitude of fitness reduction in inbred offspring increased as population-level investment in sex decreased. However, there was less of a fitness reduction following sex in the field-produced daughters, suggesting that many field-collected mothers were involved in outcross mating.  相似文献   

11.
Autopolyploidization is considered to play an important role in plant evolution. In polyploidization, the polyploid evolves from the original diploid cytotype, in which the triploid state is considered to mediate the process (triploid bridge). Nevertheless, the fitness of triploid individuals seems to be too low to facilitate the polyploidization process (triploid block). The evolutionary condition of autopolyploidy was analyzed using a mathematical model focusing on the role of parthenogenesis in triploid and tetraploid individuals. In addition, offspring were assumed to arise by sexual reproduction by conjugations between haploid, diploid, and triploid gametes produced by diploid, tetraploid, and triploid individuals. According to the analysis, even if triploid block suppresses the fitness of sexually produced triploids, the polyploidization process can proceed when parthenogenesis occurs frequently. If only triploids frequently reproduce parthenogenetically, the evolutionary consequences tend to depend on the fitness of the tetraploid individuals. On the basis of a predetermined parameter set, if tetraploid fitness is relatively low, all three ploidies can coexist. Otherwise, tetraploidization occurs. In this case, triploid parthenogenesis promotes not only triploidization but also tetraploidization. However, if both triploids and tetraploids frequently reproduce parthenogenetically, the ploidy levels with the highest fitness are likely to dominate in the population through direct competition among cytotypes.  相似文献   

12.
Until recently, facultative automictic parthenogenesis within the squamate reptiles exhibiting ZZ:ZW genetic sex determination has resulted in single reproductive events producing male (ZZ) or female (ZW) offspring. With the recent discovery of viable parthenogenetically produced female (WW) Boa constrictors, the existence of further parthenogenetic events resulting in WW females was questioned. Here, we provide genetic evidence for consecutive virgin births by a female Colombian rainbow boa (Epicrates maurus), resulting in the production of WW females likely through terminal fusion automixis. Samples were screened at 22 microsatellite loci with 12 amplifying unambiguous products. Of these, maternal heterozygosity was observed in 4, with the offspring differentially homozygous at each locus. This study documents the first record of parthenogenesis within the genus Epicrates, a second within the serpent lineage Boidae, and the third genetically confirmed case of consecutive virgin births of viable offspring within any vertebrate lineage. Unlike the recent record in Boa constrictors, the female described here was isolated from conspecifics from birth, demonstrating that males are not required to stimulate parthenogenetic reproduction in this species and possibly other Boas.  相似文献   

13.
Because of the twofold cost of sex, genes conferring asexual reproduction are expected to spread rapidly in sexual populations. However, in reality this simple prediction is often confounded by several complications observed in natural systems. Motivated by recent findings in the Cape honey bee and in the parasitoid wasp Lysiphlebus fabarum, we explore through mathematical models the spread of a recessive, parthenogenesis inducing allele in a haplodiploid population. The focus of these models is on the intricate interactions between the mode of parthenogenesis induction through automixis and complementary sex determination (CSD) systems. These interactions may result in asexual production of diploid male offspring and the spread of the parthenogenesis-inducing allele through these males. We demonstrate that if parthenogenetic females produce a substantial proportion of male offspring, this may prevent the parthenogenesis-inducing allele from spreading. However, this effect is weakened if these diploid males are at least partially fertile. We also predict a degradation of multilocus CSD systems during the spread of parthenogenesis, following which only a single polymorphic CSD locus is maintained. Finally, based on empirical parameter estimates from L. fabarum we predict that male production in parthenogens is unlikely to prevent the eventual loss of sexual reproduction in this system.  相似文献   

14.
Facultative reproductive strategies that incorporate both sexual and parthenogenetic reproduction should be optimal, yet are rarely observed in animals. Resolving this paradox requires an understanding of the economics of facultative asexuality. Recent work suggests that switching from parthenogenesis to sex can be costly and that females can resist mating to avoid switching. However, it remains unclear whether these costs and resistance behaviors are dependent on female age. We addressed these questions in the Cyclone Larry stick insect, Sipyloidea larryi, by pairing females with males (or with females as a control) in early life prior to the start of parthenogenetic reproduction, or in mid‐ or late life after a period of parthenogenetic oviposition. Young females were receptive to mating even though mating in early life caused reduced fecundity. Female resistance to mating increased with age, but reproductive switching in mid‐ or late life did not negatively affect female survival or offspring performance. Overall, mating enhanced female fitness because fertilized eggs had higher hatching success and resulted in more adult offspring than parthenogenetic eggs. However, female fecundity and offspring viability were also enhanced in females paired with other females, suggesting a socially mediated maternal effect. Our results provide little evidence that switching from parthenogenesis to sex at any age is costly for S. larryi females. However, age‐dependent effects of switching on some fitness components and female resistance behaviors suggest the possibility of context‐dependent effects that may only be apparent in natural populations.  相似文献   

15.
Templeton AR 《Genetics》1979,92(4):1265-1282
Drosophila mercatorum is a sexual species that can reproduce parthenogenetically. Previous studies revealed that parthenogenetic strains had "coadapted genomes" with high fitness under parthenogenesis and total homozygosity due to nonadditive and nonmultiplicative fitness interactions between chromosomal segments scattered throughout the genome. To study the evolutionary origins of such coadapted genomes, females from sexual matings in nature were isolated as virgins and challenged to reproduce parthenogenetically. Fitness studies were performed on genomes derived from these sexual females and upon their successful parthenogenetic progeny. By straddling the reproductive transition from sex to parthenogenesis, these fitness studies demonstrated that coadapted genomes arise immediately, apparently due to an intense selective bottleneck accompanying the reproductive transition, and are not due to the slow accumulation of epistatic complexes via mutation after parthenogenesis has already been established. The reproductive transition may also serve as an experimental model of the "genetic revolution" theory of speciation because the transition involves (1) the ultimate founder effect (one genome), (2) maximal genetic drift and fixation, (3) a drastic change in genetic environment characterized by total homozygosity, and (4) an intense selective bottleneck that interacts with the change in genetic environment and the need to adapt to a laboratory environment and a novel system of reproduction. Thus, all the elements theorized to underlie genetic revolution are present, albeit in extreme form. This study indicates that genetic revolutions are real phenomena that can quickly alter morphology, development, life history parameters and behavior. Indeed, the alterations can be so drastic that a new "species" evolves, complete with pre- and post-mating isolating mechanisms. However, isozyme loci do not appear to be the target of this genetic revolution, but rather loci regulating fundamental developmental processes. However, isozyme loci may be useful in predicting the a priori chance of a successful revolution since they can indicate how the population structure of the parent population influences levels of individual heterozygosity, the prime source of the genetic variability in the founder population that must pass through the selective bottleneck.  相似文献   

16.
Natural populations of sexually reproducing Drosophila mercatorum are capable of a very low rate of parthenogenesis, but this mode of reproduction has apparently never characterized an entirely asexual population in this species. The high abortion rate observed in laboratory parthenogenetic lines suggests that developmental constraints may cause the failure of this trait to spread in nature. To investigate the basis of this developmental instability and how it may affect the evolution of parthenogenesis in natural populations, early embryonic development was compared between one sexual and four parthenogenetic laboratory strains of D. mercatorum. There is a large amount of variation within a given parthenogenetic strain, suggesting that parthenogenesis is associated with a general breakdown of developmental stability. There is relatively little variation among different parthenogenetic strains, suggesting that most abortions are due to a feature inherent to parthenogenetic reproduction rather than a feature of a particular genome. Likewise, there is little variation between parthenogenetic and sexual strains in the causes of abortions, suggesting that the developmental problems encountered by parthenogenetic lineages are not unique to parthenogens. Thus, the failure of parthenogenesis to spread within D. mercatorum can be attributed to no particular developmental constraint per se operating after the initiation of embryogenesis. However, the overall increase in all developmental problems that occurs with the transition from sexual to parthenogenetic development suggests that the high degree of developmental instability associated with parthenogenesis may be considered a developmental constraint in its own right.  相似文献   

17.
The maintenance of obligate sex in animals is a long‐standing evolutionary paradox. To solve this puzzle, evolutionary models need to explain why obligately sexual populations consistently resist invasion by facultative strategies that combine the benefits of both sexual and asexual reproduction. Sexual antagonism and mate availability are thought to shape the occurrence of reproductive modes in facultative systems. But it is unclear how such factors interact with each other to influence facultative invasions and transitions to obligate asexuality. Using individual‐based models, we clarify how sexually antagonistic coevolution and mate availability affect the likelihood that a mutant allele that gives virgin females the ability to reproduce parthenogenetically will invade an obligately sexual population. We show that male coercion cannot stop the allele from spreading because mutants generally benefit by producing at least some offspring asexually prior to encountering males. We find that effects of sexual conflict can lead to positive frequency‐dependent dynamics, where the spread of the allele is promoted by effective (no‐cost) resistance when males are common, and by mate limitation when sex ratios are female‐biased. However, once the mutant allele fixes, effective coercion prevents the complete loss of sex unless linkage disequilibrium can build up between the allele and alleles for effective resistance. Our findings clarify how limitations of female resistance imposed by the genetic architecture of sexual antagonism can promote the maintenance of sexual reproduction. At the same time, our finding of widespread obligate sex when costs of parthenogenesis are high suggests that developmental constraints could contribute to the rarity of facultative reproductive strategies in nature.  相似文献   

18.
Parthenogenesis occurs across a variety of vertebrate taxa. Within squamate reptiles (lizards and snakes), a group for which the largest number of cases has been documented, both obligate and facultative types of parthenogenesis exists, although the obligate form in snakes appears to be restricted to a single basal species of blind snake, Indotyphlops braminus. By contrast, a number of snake species that otherwise reproduce sexually have been found capable of facultative parthenogenesis. Because the original documentation of this phenomenon was restricted to subjects held in captivity and isolated from males, facultative parthenogenesis was attributed as a captive syndrome. However, its recent discovery in nature shifts the paradigm and identifies this form of reproduction as a potentially important feature of vertebrate evolution. In light of the growing number of documented cases of parthenogenesis, it is now possible to review the phylogenetic distribution in snakes and thus identify subtle variations and commonalities that may exist through the characterization of its emerging properties. Based on our findings, we propose partitioning facultative parthenogenesis in snakes into two categories, type A and type B, based on the sex of the progeny produced, their viability, sex chromosome morphology, and ploidy, as well as their phylogenetic position. Furthermore, we introduce a hypothesis (directionality of heterogamety hypothesis) to explain the production of female‐only parthenogens in basal alethinophidian snakes and male‐only parthenogens in caenophidian (advanced) snakes.  相似文献   

19.
In spite of the predicted genetic and ecological costs of sex, most natural populations maintain sexual reproduction, even those capable of facultative parthenogenesis. Unfertilized eggs from natural populations of Drosophila mercatorum occasionally develop into viable adults, but obligately parthenogenetic populations are unknown in this species. To evaluate the microevolutionary forces that both favor and constrain the evolution of parthenogenesis in D. mercatorum, we have measured parthenogenetic rates across a natural, sexually reproducing population and characterized the life-history changes that accompany the transition from sexual to parthenogenetic reproduction in laboratory strains. A highly significant difference in parthenogenetic rate was found between two populations in close geographic proximity, with increased rate found with lower population density. Laboratory strains of parthenogenetic females suffered increased mortality and reduced egg viability relative to their virgin counterparts from a sexual strain. Lifetime egg production was similar across all strains, but a shift in peak egg production to an earlier age also occurred. The combination of these life-history traits resulted in a higher net reproductive value for sexual females, but because they also had a longer generation time, intrinsic rate of increase was not as dramatically different from parthenogenetic females. In environments with high early mortality, there may be no fitness disadvantage to parthenogenesis, but the predicted ecological advantage of a twofold increase in intrinsic rate of increase was not realized. These results support the theory of Stalker (1956) that parthenogenesis is favored in environments in which sexual reproduction is difficult or impossible.  相似文献   

20.
Sexual reproduction involves many costs. Therefore, females acquiring a capacity for parthenogenetic (or asexual) reproduction will gain a reproductive advantage over obligately sexual females. In contrast, for males, any trait coercing parthenogens into sexual reproduction (male coercion) increases their fitness and should be under positive selection because parthenogenesis deprives them of their genetic contribution to future generations. Surprisingly, although such sexual conflict is a possible outcome whenever reproductive isolation is incomplete between parthenogens and the sexual ancestors, it has not been given much attention in the studies of the maintenance of sex. Using two mathematical models, I show here that the evolution of male coercion substantially favours the maintenance of sex even though a female barrier against the coercion can evolve. First, the model based on adaptive-dynamics theory demonstrates that the resultant antagonistic coevolution between male coercion and a female barrier fundamentally ends in either the prevalence of sex or the co-occurrence of two reproductive modes. This is because the coevolution between the two traits additionally involves sex-ratio selection, that is, an increase in parthenogenetic reproduction leads to a female-biased population sex ratio, which will enhance reproductive success of more coercive males and directly promotes the evolution of the coercion among males. Therefore, as shown by the individual-based model, the establishment of obligate parthenogenesis in the population requires the simultaneous evolution of strong reproductive isolation between males and parthenogens. These findings should shed light on the interspecific diversity of reproductive modes as well as help to explain the prevalence of sexual reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号