首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In different moth species, the number and spatial arrangement of olfactory glomeruli in the antennal lobe (AL) vary widely, but the spatial map within a species is thought to be invariant, making it possible to identify single glomeruli across individuals. We investigated the relationship between the physiological tuning of pheromone-selective interneurons and their association with specific, identified glomeruli in the macroglomerular complex (MGC) of the noctuid moth, Heliothis subflexa. Three odorants that are required for pheromone-source location in this species were tested individually and in blends. Recordings from 27 pheromone-specific projection neurons (PNs) indicated that the majority (48%) were selectively activated by the major pheromone component of this species, Z-11-hexadecenal (Z11-16:Ald), with 33% primarily tuned to Z-9-hexadecenal and 19% to Z-11-hexadecenol. Intracellular staining revealed that the dendrites of PNs tuned to Z11-16:Ald always branched within the largest glomerulus of the MGC, the cumulus. Similarly, each of the other two classes of PN was associated with a different 'satellite' glomerulus in the MGC. The spatial configuration of the four-glomerulus H. subflexa MGC was indistinguishable from that previously reported in the closely related species, Heliothis virescens. Hence, as these two species diverged, changes in the association of satellite MGC glomeruli with particular odorants have occurred without a measurable change in the anatomical arrangement of the glomerular array.  相似文献   

2.
Glomeruli within the antennal lobe (AL) of moths are convergence sites for a large number of olfactory receptor neurons (ORNs). The ORNs target single glomeruli. In the male-specific cluster of glomeruli, the macroglomerular complex (MGC), the input is chemotypic in that each glomerulus of the MGC receives information about a specific component of the conspecific female sex pheromone. Little is known about how neurons that detect other odorants arborize in and amongst glomeruli. The present study focuses on how sex pheromones and biologically relevant semiochemicals are represented in the ALs of both sexes of the moth Spodoptera littoralis. To assess this, we optically measured odour-evoked changes of calcium concentration in the ALs. Foci of calcium increase corresponded in size and shape with anatomical glomeruli. More than one glomerulus was normally activated by a specific non-pheromonal odorant and the same glomerulus was activated by several odorants. All odorants and pheromone components tested evoked unique patterns of glomerular activity that were highly reproducible at repeated stimulations within an individual. Odour-evoked patterns were similar between individuals for a given odorant, implicating a spatial olfactory code. In addition, we demonstrated that activity patterns evoked by host-plant related volatiles are similar between males and females.  相似文献   

3.
The insect antennal lobe is the first brain structure to process olfactory information. Like the vertebrate olfactory bulb the antennal lobe is substructured in olfactory glomeruli. In insects, glomeruli can be morphologically identified, and have characteristic olfactory response profiles. Local neurons interconnect glomeruli, and output (projection) neurons project to higher-order brain centres. The relationship between their elaborate morphology and their physiology is not understood. We recorded electrophysiologically from antennal lobe neurons, and iontophoretically injected a calcium-sensitive dye. We then measured their spatio-temporal calcium responses to a variety of odours. Finally, we confocally reconstructed the neurons, and identified the innervated glomeruli. An increase or decrease in spiking frequency corresponded to an intracellular calcium increase or decrease in the cell. While intracellular recordings generally lasted between 10 and 30 min, calcium imaging was stable for up to 2 h, allowing a more detailed physiological analysis. The responses indicate that heterogeneous local neurons get input in the glomerulus in which they branch most strongly. In many cases, the physiological response properties of the cells corresponded to the known response profile of the innervated glomerulus. In other words, the large variety of response profiles generally found when comparing antennal lobe neurons is reduced to a more predictable response profile when the innervated glomerulus is known.Abbreviations ACT antenno-cerebralis-tract - AL antennal lobe - AP action potential - l-ACT lateral ACT - LN local neuron - LPL lateral protocerebral lobe - m-ACT medial ACT - MB mushroom body - OSN olfactory sensory neuron - PN projection neuron - T1 tract 1 of the antennal nerve  相似文献   

4.
Each olfactory (antennal) lobe of the moth Manduca sexta contains a single serotonin (5-HT) immunoreactive neuron whose processes form tufted arbors in the olfactory glomeruli. To extend our present understanding of the intercellular interactions involved in glomerulus development to the level of an individual, identified antennal lobe neuron, we first studied the morphological development of the 5-HT neuron in the presence and absence of receptor axons. Development of the neuron's glomerular tufts depends, as it does in the case of other multiglomerular neurons, on the presence of receptor axons. Processes of the 5-HT neuron are excluded from the region in which the initial steps of glomerulus construction occur and thus cannot provide a physical scaffolding on which the array of glomeruli is organized. Because the neuron's processes are present in the antennal lobe neuropil throughout postembryonic development, 5-HT could provide signals that influence the pattern of development in the lobe. By surgically producing 5-HT-depleted antennal lobes, we also tested the importance of 5-HT in the construction of olfactory glomeruli. Even in the apparent absence of 5-HT, the glomerular array initiated by the receptor axons was histologically normal, glial cells migrated to form glomerular borders, and receptor axons formed terminal branches in their normal region within each glomerulus. In some cases, 5-HT-immunoreactive processes from abnormal sources entered the lobe and formed the tufted intraglomerular branches typical of most antennal lobe neurons, suggesting that local cues strongly influence the branching patterns of developing antennal lobe neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
We used single sensillum recordings to define male Helicoverpa zea olfactory receptor neuron physiology followed by cobalt staining to trace the axons to destination glomeruli of the antennal lobe. Receptor neurons in type A sensilla that respond to the major pheromone component, (Z)-11-hexadecenal, projected axons to the cumulus of the macroglomerular complex (MGC). In approximately 40% of these sensilla a second receptor neuron was stained that projected consistently to a specific glomerulus residing in a previously unrecognized glomerular complex with six other glomeruli stationed immediately posterior to the MGC. Cobalt staining corroborated by calcium imaging showed that receptor neurons in type C sensilla sensitive to (Z)-9-hexadecenal projected to the dorsomedial posterior glomerulus of the MGC, whereas the co-compartmentalized antagonist-sensitive neurons projected to the dorsomedial anterior glomerulus. We also discovered that the olfactory receptor neurons in type B sensilla exhibit the same axonal projections as those in type C sensilla. Thus, it seems that type B sensilla are anatomically type C with regard to the projection destinations of the two receptor neurons, but physiologically one of the receptor neurons is now unresponsive to everything except (Z)-9-tetradecenal, and the other responds to none of the pheromone-related odorants tested.  相似文献   

6.
1. We have used intracellular recording and staining, followed by reconstruction from serial sections, to characterize the responses and structure of projection neurons (PNs) that link the antennal lobe (AL) to other regions of the brain of the male sphinx moth Manduca sexta. 2. Dendritic arborizations of the AL PNs were usually restricted either to ordinary glomeruli or to the male-specific macroglomerular complex (MGC) within the AL neuropil. Dendritic fields in the MGC appeared to belong to distinct partitions within the MGC. PNs innervating the ordinary glomeruli had arborizations in a single glomerulus (uniglomerular) or in more than one ordinary glomerulus of one AL (multiglomerular) or in one case, in single glomeruli in both ALs (bilateral-uniglomerular). One PN innervated the MGC and many or all ordinary glomeruli of the AL. 3. PNs with dendritic arborizations in the ordinary glomeruli and PNs associated with the MGC typically projected both to the calyces of the ipsilateral mushroom body and to the lateral protocerebrum, but some differences in the patterns of termination in those regions have been noted for the two classes of PNs. One PN conspicuously lacked branches in the calyces but did project to the lateral protocerebrum. The PN innervating the MGC and many ordinary glomeruli projected to the calyces of the ipsilateral mushroom body and the superior protocerebrum. 4. Crude sex-pheromone extracts excited all neurons with arborizations in the MGC, although some were inhibited by other odors. One P(MGC) was excited by crude sex-pheromone extract and by a mimic of one component of the pheromone blend but was inhibited by another component of the blend. 5. PNs with dendritic arborizations in ordinary glomeruli were excited or inhibited by certain non-pheromonal odors. Some of these PNs also responded to mechanosensory stimulation of the antennae. 6. The PN with dendritic arborizations in the MGC and many ordinary glomeruli was excited by crude sex-pheromone extracts and non-pheromonal odors and also responded to mechanosensory stimulation of the antenna.  相似文献   

7.
昆虫触角叶的结构   总被引:1,自引:0,他引:1  
赵新成  翟卿  王桂荣 《昆虫学报》2015,58(2):190-209
触角叶是昆虫脑内初级嗅觉中心,通过触角神经与触角联系。触角叶主要由嗅觉受体神经元、局域中间神经元、投射神经元和远心神经元构成。这些神经元的形态多样,其形态变化与其功能和昆虫嗅觉行为相关。这些神经元在触角叶内交织形成神经纤维网,在突触联系紧密的地方形成纤维球,纤维球通常排列在触角叶外周。通常,昆虫触角叶内纤维球的数量、大小和位置相对固定,并且几乎每个小球都可以被识别和命名。不同种类、性别和品级的昆虫中,纤维球的数量、大小和排列方式各不相同。触角叶结构神经元组成和纤维球的多样性,与各种昆虫嗅觉行为的特异性相对应。  相似文献   

8.
Wong AM  Wang JW  Axel R 《Cell》2002,109(2):229-241
In the fruit fly, Drosophila, olfactory sensory neurons expressing a given receptor project to spatially invariant loci in the antennal lobe to create a topographic map of receptor activation. We have asked how the map in the antennal lobe is represented in higher sensory centers in the brain. Random labeling of individual projection neurons using the FLP-out technique reveals that projection neurons that innervate the same glomerulus exhibit strikingly similar axonal topography, whereas neurons from different glomeruli display very different patterns of projection in the protocerebrum. These results demonstrate that a topographic map of olfactory information is retained in higher brain centers, but the character of the map differs from that of the antennal lobe, affording an opportunity for integration of olfactory sensory input.  相似文献   

9.
In male moths, the primary olfactory integration centre, the antennal lobe, consists of two systems. The macroglomerular complex processes pheromone information, while the ordinary glomeruli process plant odour information. Females lack a macroglomerular complex. We measured the spatial representation of odours using in-vivo optical recording. We found that: (1) pheromone substances elicited activity exclusively in the MGC. No response was found in female antennal lobes. (2) Plant odours elicited combinatorial activity patterns in the ordinary glomeruli in both males and females. No response was found in the MGC of male moths. (3) A clean air puff often led to activity, in both males and females, suggesting that mechano-sensory information is also processed in the antennal lobe. (4) With an interstimulus interval of 5 or 10 s, strongly activated glomeruli were able to follow the temporal structure of the stimulus, while others lost their phase-locking. Some glomeruli showed "off" responses. These properties were odour dependent. This confirms and extends previous studies, showing the functional significance of the two subsystems for processing olfactory information. Pheromones are coded in a combinatorial manner within the macroglomerular complex, with each glomerulus corresponding to one information channel. Plant odours are coded in an across-glomeruli code in the ordinary glomeruli.  相似文献   

10.
The influence of olfactory receptor cell (ORC) axons from transsexually grafted antennae on the development of glomeruli in the antennal lobes (ALs), the primary olfactory centers, was studied in the moth Manduca sexta. Normally during metamorphic adult development, the pheromone-specific macroglomerular complex (MGC) forms only in the ALs of males, whereas two lateral female-specific glomeruli (LFGs) develop exclusively in females. A female AL innervated by ORC axons from a grafted male antenna developed an MGC with three glomeruli, like the MGC of a normal male AL. Conversely, a male AL innervated by ORC axons from a grafted female antenna lacked the MGC but exhibited LFGs. ORC axons from grafted male antenna terminated in the MGC-specific target area, even in cases when the antennal nerve (AN) entered the AL via an abnormal route. Within ectopic neuromas formed by ANs that had become misrouted and failed to enter the brain, male-specific axons were not organized and formed terminal branches in many areas. The results suggest the presence of guidance cues within the AL for male-specific ORC axons. Depending on the sex of the antennal innervation, glial borders formed in a pattern characteristic of the MGC or LFGs. The sex-specific number of projection neurons (PNs) in the medial group of AL neurons remained unaffected by the antennal graft, but significant changes occurred in the organization of PN arborizations. In gynandromorphic females, LFG-specific PNs extended processes into the induced MGC, whereas in gynandromorphic males, PNs became restricted to the LFGs. The results indicate that male-and female-specific ORC axons play important roles in determining the position, anatomical features, and innervation of sexually dimorphic glomeruli.  相似文献   

11.
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.  相似文献   

12.
The primary olfactory centres share striking similarities across the animal kingdom. The most conspicuous is their subdivision into glomeruli, which are spherical neuropil masses in which synaptic contacts between sensory and central neurons occur. Glomeruli have both an anatomical identity (being invariant in location, size and shape) and a functional identity (each glomerulus receiving afferents from olfactory receptor neurons that express the same olfactory receptor). Identified glomeruli offer a favourable system for analysing quantitatively the constancy and variability of the neuronal circuits, an important issue for understanding their function, development and evolution. The noctuid moth Spodoptera littoralis with its well-studied pheromone communication system has become a model species for olfaction research. We analyse here its glomerular organisation based on ethyl-gallate-stained and synapsin-stained preparations. Although we have confirmed that the majority of glomeruli can be individually identified in various antennal lobes, we have recognised several types of biological variability. Some glomeruli are absent, possibly indicating the lack of the corresponding receptor neuron type or its misrouting during development. The antennal lobes vary in global shape and, consequently, the spatial location of the glomerular changes. Although they do not prevent glomerulus identification when quantitative analysis methods are used, these variations place limits on the straightforward identification of glomeruli in functional studies, e.g. calcium-imaging or single-cell staining, when using conventional three-dimensional maps of individual antennal lobes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. This work was supported by research grants from INRA (Projet Jeune Equipe and Projet S.P.E.) to S.A. and J.P.R. and from ANR-BBSRC 07 BSYS 006 (Pherosys) to J.P.R. and S.A. and by a PhD grant from INRA Departments M.I.A. and S.P.E. to L.C.  相似文献   

13.
Insects use information about CO2 to perform vital tasks such as locating food sources. In certain moths, CO2 is involved in oviposition behavior. The labial palps of adult moths that feed as adults have a pit organ containing sensory receptor cells that project into the antennal lobes, the sites of primary processing of olfactory information in the brain. In the moth Manduca sexta and certain other species of Lepidoptera, these receptor cells in the labial-palp pit organ have been shown to be tuned to CO2, and their axons project to a single, identified glomerulus in the antennal lobe, the labial-palp pit organ glomerulus. At present, however, nothing is known about the function of this glomerulus or how CO2 information is processed centrally. We used intracellular recording and staining to reveal projection (output) neurons in the antennal lobes that respond to CO2 and innervate the labial-palp pit organ glomerulus. Our results demonstrate that this glomerulus is the site of first-order processing of sensory information about ambient CO2. We found three functional types of CO2-responsive neurons (with their cell bodies in the antennal lobe or the protocerebrum) that provide output from the antennal lobe to higher centers in the brain. Some physiological characteristics of those neurons are described.Abbreviations AL Antennal lobe - AN Antennal nerve - CMB Calyces of the mushroom body - IPSP Inhibitory postsynaptic potential - LC-I Dorsal cluster of the lateral group of AL neuronal somata - LH Lateral horn of the protocerebrum - LPN Labial-palp nerve - LPO Labial-palp pit organ - LPOG LPO glomerulus - PC Protocerebrum - PI AL neuron that projects to the PC through the inner antenno-cerebral tract - PN Projection neuron  相似文献   

14.
【目的】鉴定雄性棉铃虫Helicoverpa armigera成虫触角性信息素感器嗅觉受体神经元的功能、形态及中枢投射路径。【方法】利用单感器记录技术记录棉铃虫嗅觉受体神经元对性信息素的反应,同时采用荧光染料作为示踪剂染色标记嗅觉受体神经元;使用免疫组织化学方法处理相应的脑组织,标记脑内触角叶的神经纤维球结构;用激光扫描共聚焦显微镜获取图像数据,使用图形软件ZEN和Amira 4.1.1进行三维结构重建。【结果】记录到雄性棉铃虫成虫触角上长毛形感器对主要性信息素成分Z11-16∶Ald产生明显的电生理反应,并成功染色标记了该感器内的嗅觉受体神经元。染色标记显示该感器内具有两个嗅觉受体神经元,其轴突通过触角神经分别投射触角叶内的云状体神经纤维球和普通神经纤维球。【结论】单感器记录与神经元示踪两技术结合能够用于鉴定昆虫触角嗅觉受体神经元的功能、形态和投射至神经纤维球的路径。与赖氨酸钴方法比较,使用荧光染料法进行神经元示踪,操作更简便,且易于进行三维空间分析,为调查棉铃虫其他嗅觉神经元的投射路径以明确外周气味受体感受与中枢系统的联系提供了有力技术支持。  相似文献   

15.
Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.  相似文献   

16.
In insects, olfactory receptor neurons (ORNs) are located in cuticular sensilla, that are present on the antennae and on the maxillary palps. Their axons project into spherical neuropil, the glomeruli, which are characteristic structures in the primary olfactory center throughout the animal kingdom. ORNs in insects often respond specifically to single odor compounds. The projection patterns of these neurons within the primary olfactory center, the antennal lobe, are, however, largely unknown.We developed a method to stain central projections of intact receptor neurons known to respond to host odor compounds in the malaria mosquito, Anopheles gambiae. Terminal arborizations from ORNs from antennal sensilla had only a few branches apparently restricted to a single glomerulus. Axonal arborizations of the different neurons originating from the same sensillum did not overlap.ORNs originating from maxillary palp sensilla all projected into a dorso-medial area in both the ipsi- and contralateral antennal lobe, which received in no case axon terminals from antennal receptor neurons. Staining of maxillary palp receptor neurons in a second mosquito species (Aedes aegypti) revealed unilateral arborizations in an area at a similar position as in An. gambiae.  相似文献   

17.
The central projections of olfactory receptor cells associatedwith two distinct types of antennal sensilla in the sphinx mothManduca sexta were revealed by anterograde staining. In bothsexes, receptor axons that arise from sexually isomorphic, type-IItrichoid sensilla (and possibly some basiconic sensilla) projectto the spheroidal glomeruli in the ipsilateral antennal lobe.Each axon terminates in one glomerulus. Axons from a limitedregion of the antenna project to glomeruli throughout the lobe,arguing against strict topographic mapping of antennal receptorcells onto the array of glomeruli. Axons of sex-pheromone-selectivereceptor cells in the male-specific type-I trichoid sensillaproject exclusively to the sexually dimorphic macroglomerularcomplex (MGC). Axons from sensilla on the dorsal surface ofthe antenna are biased toward the medial MGC and those fromventral sensilla, toward the lateral MGC. Some receptor-cellaxons branch before reaching the MGC, but their terminals arealways confined to one of the two main glomerular divisionsof the MGC, the cumulus and toroid. These findings confirm thatprimary-afferent information about pheromonal and non-pheromonalodors is segregated in the antennal lobe and suggest that thereis a functional correspondence between particular olfactoryreceptor cells and specific glomeruli. Chem. Senses 20: 313–323,1995.  相似文献   

18.
We used single-sensillum recordings to characterize male Heliothis subflexa antennal olfactory receptor neuron physiology in response to compounds related to their sex pheromone. The recordings were then followed by cobalt staining in order to trace the neurons' axons to their glomerular destinations in the antennal lobe. Receptor neurons responding to the major pheromone component, (Z)-11-hexadecenal, in the first type of sensillum, type-A, projected axons to the cumulus of the macroglomerular complex (MGC). In approximately 40% of the type-A sensilla, a colocalized receptor neuron was stained that projected consistently to the posterior complex 1 (PCx1), a specific glomerulus in an 8-glomerulus complex that we call the Posterior Complex (PCx). We found that receptor neurons residing in type-B sensilla and responding to a secondary pheromone component, (Z)-9-hexadecenal, send their axons to the dorsal medial glomerulus of the MGC. As in the type-A sensilla, we found a cocompartmentalized neuron within type-B sensilla that sends its axon to a different glomerulus of the PCx4. One neuron in type-C sensilla tuned to a third pheromone component, (Z)-11-hexadecenol, and a colocalized neuron responding to (Z)-11-hexadecenyl acetate projected their axons to the anteromedial and ventromedial glomeruli of the MGC, respectively.  相似文献   

19.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   

20.
Olfactory stimuli that are essential to an animal’s survival and reproduction are often complex mixtures of volatile organic compounds in characteristic proportions. Here, we investigated how these proportions are encoded in the primary olfactory processing center, the antennal lobe, of male Manduca sexta moths. Two key components of the female’s sex pheromone, present in an approximately 2:1 ratio, are processed in each of two neighboring glomeruli in the macroglomerular complex (MGC) of males of this species. In wind-tunnel flight experiments, males exhibited behavioral selectivity for ratios approximating the ratio released by conspecific females. The ratio between components was poorly represented, however, in the firing-rate output of uniglomerular MGC projection neurons (PNs). PN firing rate was mostly insensitive to the ratio between components, and individual PNs did not exhibit a preference for a particular ratio. Recording simultaneously from pairs of PNs in the same glomerulus, we found that the natural ratio between components elicited the most synchronous spikes, and altering the proportion of either component decreased the proportion of synchronous spikes. The degree of synchronous firing between PNs in the same glomerulus thus selectively encodes the natural ratio that most effectively evokes the natural behavioral response to pheromone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号