首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Purposeful pollination of yucca by females of a moth that produces larvae that feed on some of the seeds is a classic example of plant-animal mutualism. Recent research has focused on the complex interspecific nature of this association. Pollinators are members of two genera with different oviposition and larval biologies. There appear to be several sibling species among populations of the pollinator that were formerly considered to be a single widespread generalist, and these may include sympatric nonpollinator 'cheaters'. Bogus yucca moths, members of a third genus, which neither transport pollen nor feed in the seed but depend upon the inflorescences, are niche specific and often host-species specific and include one leaf-mining species. Their larvae can spend many years in diapause before synchronized development.  相似文献   

2.
Althoff DM 《Molecular ecology》2008,17(17):3917-3927
Parasitic taxa span an antagonistic continuum, with some parasites inflicting no fitness costs to some that kill the host after feeding. Host-associated differentiation is postulated as a major process facilitating speciation in many parasitic taxa. Here, I examined the importance of host-associated differentiation in a parasitoid wasp that develops on yucca moths in the genus Prodoxus. Prodoxus are specialists on Yucca , and moth speciation is closely tied to differences in microhabitat use within a plant and among host plant species. Parasitoids in the genus Eusandalum have been reared from Prodoxus species distributed across Yucca . Estimates of host-use patterns obtained through rearings of adult wasps were combined with surveys of mitochondrial DNA cytochrome oxidase I sequence data and amplified fragment length polymorphism markers to determine if populations of Eusandalum were genetically structured based on host use. Eusandalum populations were genetically structured based on geographical distance rather than moth host species, microhabitats within plants, or Yucca species. The results are contrary to the patterns observed in the host genus Prodoxus . Although parasitoids exhibit parasite-like characteristics, these results suggest that Eusandalum may be best viewed as a predator. Female wasps are able to utilize any moth species present at a given locality, and there is little likelihood that host specialization may facilitate population subdivision and speciation.  相似文献   

3.
Reciprocal specialization in interspecific interactions, such as plant-pollinator mutualisms, increases the probability that either party can have detrimental effects on the other without the interaction being dissolved. This should be particularly apparent in obligate mutualisms, such as those that exist between yucca and yucca moths. Female moths collect pollen from yucca flowers, oviposit into floral ovaries, and then pollinate those flowers. Yucca moths, which are the sole pollinators of yuccas, impose a cost in the form of seed consumption by the moth larvae. Here we ask whether there also is a genetic cost through selfish moth behavior that may lead to high levels of self fertilization in the yuccas. Historically, it has been assumed that females leave a plant immediately after collecting pollen, but few data are available. Observations of a member of the Tegeticula yuccasella complex on Yucca filamentosa revealed that females remained on the plant and oviposited in 66% of all instances after observed pollen collections, and 51% of all moths were observed to pollinate the same plant as well. Manual cross and self pollinations showed equal development and retention of fruits. Subsequent trials to assess inbreeding depression by measuring seed weight, germination date, growth rate, and plant mass at 5 months revealed significant negative effects on seed weight and germination frequency in selfed progeny arrays. Cumulative inbreeding depression was 0.475, i.e., fitness of selfed seeds was expected to be less than half that of outcrossed seeds. Single and multilocus estimates of outcrossing rates based on allozyme analyses of open-pollinated progeny arrays did not differ from 1.0. The discrepancy between high levels of behavioral self-pollination by the moths and nearly complete outcrossing in mature seeds can be explained through selective foreign pollen use by the females, or, more likely, pollen competition or selective abortion of self-pollinated flowers during early stages of fruit development. Thus, whenever the proportion of pollinated flowers exceeds the proportion that can be matured to ripe fruit based on resource availability, the potential detrimental genetic effects imposed through geitonogamous pollinations can be avoided in the plants. Because self-pollinated flowers have a lower probability of retention, selection should act on female moths to move among plants whenever moth density is high enough to trigger abortion. Received: 18 March 1996 \Accepted: 30 July 1996  相似文献   

4.
The pollination mutualism between yucca moths and yuccas highlights the potential importance of host plant specificity in insect diversification. Historically, one pollinator moth species, Tegeticula yuccasella, was believed to pollinate most yuccas. Recent phylogenetic studies have revealed that it is a complex of at least 13 distinct species, eight of which are specific to one yucca species. Moths in the closely related genus Prodoxus also specialize on yuccas, but they do not pollinate and their larvae feed on different plant parts. Previous research demonstrated that the geographically widespread Prodoxus quinquepunctellus can rapidly specialize to its host plants and may harbor hidden species diversity. We examined the phylogeographic structure of P. quinquepunctellus across its range to compare patterns of diversification with six coexisting pollinator yucca moth species. Morphometric and mtDNA cytochrome oxidase I sequence data indicated that P. quinquepunctellus as currently described contains two species. There was a deep division between moth populations in the eastern and the western United States, with limited sympatry in central Texas; these clades are considered separate species and are redescribed as P. decipiens and P. quinquepunctellus (sensu stricto), respectively. Sequence data also showed a lesser division within P. quinquepunctellus s.s. between the western populations on the Colorado Plateau and those elsewhere. The divergence among the three emerging lineages corresponded with major biogeographic provinces, whereas AMOVA indicated that host plant specialization has been relatively unimportant in diversification. In comparison, the six pollinator species comprise three lineages, one eastern and two western. A pollinator species endemic to the Colorado Plateau has evolved in both of the western lineages. The east-west division and the separate evolution of two Colorado Plateau pollinator species suggest that similar biogeographic factors have influenced diversification in both Tegeticula and Prodoxus. For the pollinators, however, each lineage has produced a monophagous species, a pattern not seen in P. quinquepunctellus.  相似文献   

5.
Bao  & Addicott 《Ecology letters》1998,1(3):155-159
Yucca baccata cheats in its obligate pollination/seed predation mutualism with yucca moths. Although all individuals use the pollination services of yucca moths, many individuals do not reciprocate in sustaining yucca moth larvae. Cheating is associated with the morphology of Y. baccata pistils. In Y. baccata , the apex of the ovary contains only inviable ovules, and there are two distinct flower types, one of which has twice as many potentially viable ovules as the other. Because yucca moths oviposit at the apex of Y. baccata ovaries, larvae in flowers with few viable ovules fail to encounter viable ovules and therefore perish. Inflorescences generally have just one flower type, implying that some individuals cheat whereas others maintain the yucca moth population. Our most surprising observation, however, is that although the proportion of cheaters should be low, over 70% of Y. baccata individuals cheat. We hypothesize that both density- and frequency-dependent processes maintain a balance of cheaters and noncheaters in this system.  相似文献   

6.
Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community--Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes.  相似文献   

7.
The yucca moths (Tegeticula and Parategeticula) are of great importance in studies of coevolution because of their obligate mutualism with their yucca hosts. Historically, three species of Tegeticula have been recognized. One of them, T. yuccasella, has been regarded as the pollinator of all but two yucca species, but morphological, molecular and biological data show that this is a large complex of monophagous and oligophagous species that differ greatly in their biology. It also includes derived ‘cheater’ species that do not pollinate their hosts and oviposit into fruits rather than flowers. Here the yuccasella complex north of Mexico is revised. The nominotypic pollinator species yuccasella is redescribed, and ten new pollinator species described: altiplanella, baccatella, carnerosanella, cassandra, elatella, maderae, mojavella, rostratella, superficiella and treculeanella. Two non-pollinating cheater species are recognized. One such species originally misidentified as a Prodoxus species, then synonymised with yuccasella, is re-erected as the non-pollinating intermedia. In addition, the new non-pollinator species corruptrix is described.  相似文献   

8.
Competition among yucca moths occurs because retention of flowers is resource limited: the more flowers that are visited the lower the probability that a visited flower will become a fruit. However, an unusual mechanism causes asymmetric competition between two species of yucca moths, with the asymmetry being based upon differential retention/abscission of flowers. Flowers containing eggs of yucca moths that oviposit through the carpel wall (=deeps) are more likely to abscise when other flowers on the same plant contain only the eggs of yucca moths that oviposit into the surface of the carpel wall (=shallows). The advantage of shallows over deeps suggests that shallows should be able to invade sites occupied by deeps, and outcompete deeps. However, proportions of deeps and shallows on Yucca kanabensis have been relatively stable for the last 12 years, and shallows have failed to invade sites with only deeps.
We examined four factors that could affect the ability of deeps to coexist with shallows. 1) The competitive advantage of shallows over deeps was greatest on plants with intermediate levels of visitation. With low visitation few pollinated flowers abscised, competition was weak, and the differential success of shallows was weak. With high visitation intra‐ and interspecific competition was strong, but the differential success was low because most flowers received eggs from both deeps and shallows. 2) There was a partial seasonal segregation of deeps and shallows, with deeps emerging earlier than shallows, thereby increasing the probability of some deeps occurring on plants with relatively few shallows. 3) Although independent aggregation of deeps and shallows at the level of plants could promote coexistence by generating plants where deeps encounter few shallows, association of deeps and shallows was positive. 4) Deeps aggregated among flowers within plants much less than did shallows, which decreases the number of flowers with only shallow ovipositions and decreases the opportunity for asymmetric competition.  相似文献   

9.
Ecological interactions between yucca moths (Tegeticula, Prodoxidae) and their host plants (Yucca, Agavaceae) are exemplary of obligate plant-pollinator mutualism and co-evolution. We describe a multiplex microsatellite DNA protocol for species identification and sibship assignment of sympatric larvae from Tegeticula synthetica and Tegeticula antithetica, pollinators of the Joshua tree (Yucca brevifolia). Bayesian clustering provides correct diagnosis of species in 100% of adult moths, with unambiguous identification of sympatric larvae. Sibship assignments show that larvae within a single fruit are more likely to be full-sibs or half-sibs than larvae from different fruit, consistent with the hypothesis that larval clutches are predominantly the progeny of an individual female.  相似文献   

10.
11.
12.
Coevolution between flowering plants and their pollinators is thought to have generated much of the diversity of life on Earth, but the population processes that may have produced these macroevolutionary patterns remain unclear. Mathematical models of coevolution in obligate pollination mutualisms suggest that phenotype matching between plants and their pollinators can generate reproductive isolation. Here, we test this hypothesis using a natural experiment that examines the role of natural selection on phenotype matching between yuccas and yucca moths (Tegeticula spp.) in mediating reproductive isolation between two varieties of Joshua tree (Yucca brevifolia var. brevifolia and Y. brevifolia var. jaegeriana). Using passive monitoring techniques, DNA barcoding, microsatellite DNA genotyping, and sibship reconstruction, we track host specificity and the fitness consequences of host choice in a zone of sympatry. We show that the two moth species differ in their degree of host specificity and that oviposition on a foreign host plant results in the production of fewer offspring. This difference in host specificity between the two moth species mirrors patterns of chloroplast introgression from west to east between host varieties, suggesting that natural selection acting on pollinator phenotypes mediates gene flow and reproductive isolation between Joshua‐tree varieties.  相似文献   

13.
Tetraspanins regulate cell migration, sperm–egg fusion, and viral infection. Through interactions with one another and other cell surface proteins, tetraspanins form a network of molecular interactions called the tetraspanin web. In this study, we use single-molecule fluorescence microscopy to dissect dynamics and partitioning of the tetraspanin CD9. We show that lateral mobility of CD9 in the plasma membrane is regulated by at least two modes of interaction that each exhibit specific dynamics. The majority of CD9 molecules display Brownian behavior but can be transiently confined to an interaction platform that is in permanent exchange with the rest of the membrane. These platforms, which are enriched in CD9 and its binding partners, are constant in shape and localization. Two CD9 molecules undergoing Brownian trajectories can also codiffuse, revealing extra platform interactions. CD9 mobility and partitioning are both dependent on its palmitoylation and plasma membrane cholesterol. Our data show the high dynamic of interactions in the tetraspanin web and further indicate that the tetraspanin web is distinct from raft microdomains.  相似文献   

14.
Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.  相似文献   

15.
16.
It is difficult to directly observe processes like natural selection at the genetic level, but relatively easy to estimate genetic frequencies in populations. As a result, genetic frequency data are widely used to make inferences about the underlying evolutionary processes. However, multiple processes can generate the same patterns of frequency data, making such inferences weak. By studying the limits to the underlying processes, one can make inferences from frequency data by asking how strong selection (or some other process of interest) would have to be to generate the observed pattern. Here we present results of a study of the limits to the relationship between selection and recombination in two-locus, two-allele systems in which we found the limiting relationships for over 30 000 sets of parameters, effectively covering the range of two-locus, two-allele problems. Our analysis relates T min—the minimum time for a population to evolve from the initial to the final conditions—to the strengths of selection and recombination, the amount of linkage disequilibrium, and the Nei distance between the initial and final conditions. T min can be large with either large disequilibrium and small Nei distance, or the reverse. The behavior of T min provides information about the limiting relationships between selection and recombination. Our methods allow evolutionary inferences from frequency data when deterministic processes like selection and recombination are operating; in this sense they complement methods based entirely on drift.  相似文献   

17.
Mitosis in Giardia lamblia: multiple modes of cytokinesis   总被引:3,自引:0,他引:3  
Benchimol M 《Protist》2004,155(1):33-44
Mitosis in Giardia is poorly understood. Until today, it is still controversial whether Giardia divides with a mirror-image symmetry (ventral-ventral or dorsal-dorsal) or in a dorsal-ventral mode. Here, we report the different modes by which cytokinesis takes place in Giardia lamblia. To determine how Giardia divides, video microscopy, scanning electron microscopy, semi-thick sections and freeze-fracture replicas were analyzed by transmission electron microscopy. Between 12 and 15% of the cells cultivated for 24-48 h were found in the process of division. Three types of cytokinesis were found: (1) ventral-ventral, where the discs face each other; (2) dorsal-dorsal, where the discs are in opposite directions; and (3) ventral-dorsal. Giardia divides with mirror-image symmetry either in ventral-ventral or dorsal-dorsal modes. During ventral-ventral type of division, Giardia becomes detached and swims freely in the culture medium, whereas, in the other modes of division, the cells can be found either adhered or swimming.  相似文献   

18.
I analyzed the interaction of different types of costs in determiningoptimal behavior using mathematical models. The analysis concentrateson foraging behavior and asks (1) whether the cost factor thathas the greatest effect on fitness generally has the greatesteffect on optimal trait values and (2) whether increasing thesize of one type of cost makes the optimal behavior absolutelyor relatively more sensitive to that cost. The foraging costsconsidered are energy expenditure, predation risk, and othermortality factors. It is shown that increasing the magnitudeof one cost often decreases the relative and absolute sensitivityof the optimal foraging strategy to that cost. The relativefitness effects of different costs generally differ from therelative sensitivities of the optimal strategies to the costfactors. Researchers should therefore measure the shapes ofcost curves rather than their average magnitudes to determinewhich of several costs can be ignored in cost-benefit analyses.  相似文献   

19.
Role of Magnesium ion is well substantiated in DNA structure and function though the appropriate nature of DNA magnesium interaction is still not fully established. We have analyzed available DNA crystal structures in presence of magnesium ion, which show the experimental evidences for various interaction modes between DNA molecule and magnesium ion. Two preferred modes are found: direct coordinating interaction between magnesium ion and electronegative DNA atoms, and the secondary mode of interaction via formation of hydrogen bonds. This qualitative data is further supported by ab initio quantum chemical calculations using restricted Hartree-Fock and Density Functional Theory. We have analyzed the energies and partial charges of different DNA fragments and hydrated magnesium ions, following restrained and unrestrained geometry optimizations along the reaction coordinate. The restrained optimizations for the systems generally show two energy minima separated by an energy barrier, the height ranges from about 5 to 15 kcal/mol, which is in agreement with experimental observations. All these analyses suggest that both modes of interactions occur almost with equal probability, although water mediated secondary mode of interaction is preferred in most cases, which was so far neglected.  相似文献   

20.
The complex of Lactobacillus casei dihydrofolate reductase with the substrate folate and the coenzyme NADP+ has been shown to exist in solution as a mixture of three slowly interconverting conformations whose proportions are pH-dependent [Birdsall, B., Gronenborn, A. M., Hyde, E. I., Clore, G. M., Roberts, G. C. K., Feeney, J., & Burgen, A. S. V. (1982) Biochemistry 21, 5831]. The assignment of the resonances of all the aromatic protons of the ligand molecules in all three conformational states of the complex has now been completed by using a variety of NMR methods, particularly two-dimensional exchange experiments. The resonances of the nicotinamide protons of the coenzyme and the pteridine 7-proton of the folate have different chemical shifts in the three conformations, in some cases differing by more than 1 ppm. Comparison of the COSY spectra of the complex at low pH (conformation I) and high pH (conformations IIa and IIb) with that of the enzyme-methotrexate-NADP+ complex shows only slight differences in the conformation of the protein. The pattern of chemical shift changes in the ligand and the protein indicates that the structural differences are localized within the active site of the enzyme. Nuclear Overhauser effects (NOEs) are observed between the nicotinamide 5- and 6-protons and the methyl resonance of Thr 45 at both low and high pH, indicating that there is no major movement of the nicotinamide ring. By contrast, NOEs are observed between the pteridine 7-proton and the methyl protons of Leu 19 and Leu 27 in conformations I and IIa but not in conformation IIb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号