首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John F. Addicott 《Oecologia》1986,70(4):486-494
Summary Yucca moths are both obligate pollinators and obligate seed predators of yuccas. I measured the costs and net benefits per fruit arising for eight species of yuccas from their interaction with the yucca moth Tegeticula yuccasella. Yucca moths decrease the production of viable seeds as a result of oviposition by adults and feeding by larvae. Oviposition through the ovary wall caused 2.3–28.6% of ovules per locule to fail to develop, leaving fruit with constrictions, and overall, 0.6–6.6% of ovules per fruit were lost to oviposition by yucca moths. Individual yucca moth larvae ate 18.0–43.6% of the ovules in a locule. However, because of the number of larvae per fruit and the proportion of viable seeds, yucca moth larvae consumed only 0.0–13.6% of potentially viable ovules per fruit. Given both oviposition and feeding effects, yucca moths decreased viable seed production by 0.6–19.5%. The ratio of costs to (gross) benefits varied from 0% to 30%, indicating that up to 30% of the benefits available to yuccas are subsequently lost to yucca moths. The costs are both lower and more variable than in a similar pollinator-seed predator mutualism involving figs and fig wasps.There were differences between species of yuccas in the costs of associating with yucca moths. Yuccas with baccate fruit experienced lower costs than species with capsular fruit. There were also differences in costs between populations within species and high variation in costs between fruit within populations. High variability was the result of no yucca moth larvae being present in over 50% of the fruit in some populations, while other fruit produced up to 24 larvae. I present hypotheses explaining both the absence and high numbers of larvae per fruit.  相似文献   

2.
Re-evaluating the role of selective abscission in moth/yucca mutualisms   总被引:3,自引:0,他引:3  
Conflicts of interest are common to mutualisms, particularly those derived from exploitative interactions. Conflicts of interest are particularly pronounced in pollination/seed predation mutualisms, such as moth/yucca interactions, where consumption of seeds by larvae of a plant's pollinator will raise the fitness of the pollinator but lower the fitness of the plant. A central question in these mutualisms is, therefore, “what limits seed predation?” If plants with excess flowers selectively abscise flowers containing many eggs, they may reduce seed predation and overall increase their fecundity. If eggs in abscised flowers die, selective abscission may additionally contribute to the limitation or regulation of pollinator populations, thereby decreasing the probability of future overexploitation. We examined the effect of selective abscission in the mutualism between Yucca kanabensis and one of its pollinating moths, Tegeticula altiplanella. Per capita mortality of moth eggs due to abscission was high (95.5%), but did not increase on inflorescences with more ovipositions per flower. Overall mortality was partitioned into two components based upon the proportion of visited flowers abscised (i.e. resource‐limitation) and additional mortality (=selective abscission). Resource‐limitation per se inflicted 93.9% egg mortality, or most of the mortality due to abscission. But, the average number of eggs in fruit was lower than the average number of eggs in flowers, indicating that there was some selectivity of abscission. However, neither source of mortality increased on inflorescences with more ovipositions per visited flower. Egg mortality resulting from selective abscission was not as high as possible, because the yuccas appeared to use oviposition‐damaged ovules as a cue for selective abscission, and there was considerable variation in the relationship between oviposition number and damaged ovules. However, even if yuccas had retained the flowers containing the fewest eggs, selective abscission still would not have been higher on inflorescences with more ovipositions per flower. Considering also that, 1) number of ovipositions is a poor predictor of the number of larvae that hatch and feed on the developing seeds in a fruit and that, 2) there are several moth/yucca interactions in which selective abscission does not occur, we conclude that abscission, and particular selective abscission, may have density‐limiting effects on moth populations, but will fail as general explanations for regulating the dynamics of moth populations.  相似文献   

3.
Pollination–seed predation mutualisms such as moth–yucca interactions are important model systems for studying mechanisms that limit exploitation when mutualistic partners have strong conflicts of interest. In many moth–yucca interactions, oviposition leads to the failure of some ovules to develop normally. Here, we demonstrate that moth eggs almost always perish if they are inside these oviposition‐induced ‘damage zones’ of developing fruit. Moreover, because more ovipositions result both in larger damage zones and in higher proportions of eggs within damage zones, this source of mortality is strongly density‐dependent. Therefore, mortality of eggs in oviposition‐induced damage zones may be an important process for limiting seed consumption and regulating moth densities in many moth–yucca mutualisms.  相似文献   

4.
The interaction between yucca moths (Tegeticula spp., Incurvariidae) and yuccas (Yucca spp., Agavaceae) is an obligate pollination/seed predation mutualism in which adult female yucca moths pollinate yuccas, and yucca moth larvae feed on yucca seeds. In this paper we document that individual yucca moths, which are capable of acting as mutualists, facultatively cheat by ovipositing in yucca pistils without attempting to transfer pollen. Additionally, a high proportion of flowers are unlikely to receive pollen even when pollination is attempted, because many yucca moths carry little or no pollen. The probability of occurrence of non-mutualistic behaviour is not affected by the amount of pollen a moth carries: moths with full pollen loads are just as likely to act non-mutualistically as moths carrying little or no pollen. We propose four hypotheses that could explain facultative non-mutualistic behaviour in yucca moths.Present address: Department of Biology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada  相似文献   

5.
Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.  相似文献   

6.
Althoff DM  Segraves KA  Sparks JP 《Oecologia》2004,140(2):321-327
Yucca moths are most well known for their obligate pollination mutualism with yuccas, where pollinator moths provide yuccas with pollen and, in exchange, the moth larvae feed on a subset of the developing yucca seeds. The pollinators, however, comprise only two of the three genera of yucca moths. Members of the third genus, Prodoxus, are the bogus yucca moths and are sister to the pollinator moths. Adult Prodoxus lack the specialized mouthparts used for pollination and the larvae feed on plant tissues other than seeds. Prodoxus larvae feed within the same plants as pollinator larvae and have the potential to influence yucca reproductive success directly by drawing resources away from flowers and fruit, or indirectly by modifying the costs of the mutualism with pollinators. We examined the interaction between the scape-feeding bogus yucca moth, Prodoxus decipiens, and one of its yucca hosts, Yucca filamentosa, by comparing female reproductive success of plants with and without moth larvae. We determined reproductive success by measuring a set of common reproductive traits such as flowering characteristics, seed set, and seed germination. In addition, we also quantified the percent total nitrogen in the seeds to determine whether the presence of larvae could potentially reduce seed quality. Flowering characteristics, seed set, and seed germination were not significantly different between plants with and without bogus yucca moth larvae. In contrast, the percent total nitrogen content of seeds was significantly lower in plants with P. decipiens larvae, and nitrogen content was negatively correlated with the number of larvae feeding within the inflorescence scape. Surveys of percent total nitrogen at three time periods during the flowering and fruiting of Y. filamentosa also showed that larval feeding decreased the amount of nitrogen in fruit tissue. Taken together, the results suggest that although P. decipiens influences nitrogen distribution in Y. filamentosa, this physiological effect does not appear to impact the female components of reproductive success.  相似文献   

7.
We investigated pollen dispersal in an obligate pollination mutualism between Yucca filamentosa and Tegeticula yuccasella. Yucca moths are the only documented pollinator of yuccas, and moth larvae feed solely on developing yucca seeds. The quality of pollination by a female moth affects larval survival because flowers receiving small amounts of pollen or self-pollen have a high abscission probability, and larvae die in abscised flowers. We tested the prediction that yucca moths primarily perform outcross pollinations by using fluorescent dye to track pollen dispersal in five populations of Y. filamentosa. Dye transfers within plants were common in all populations (mean ± 1 SE, 55 ± 3.0%), indicating that moths frequently deposit self-pollen. Distance of dye transfers ranged from 0 to 50 m, and the mean number of flowering plants between the pollen donor and recipient was 5 (median = 0), suggesting that most pollen was transferred among near neighbors. A multilocus genetic estimate of outcrossing based on seedlings matured from open-pollinated fruits at one site was 94 ± 6% (mean ± 1 SD). We discuss why moths frequently deposit self-pollen to the detriment of their offspring and compare the yucca-yucca moth interaction with other obligate pollinator mutualisms in which neither pollinator nor plant benefit from self-pollination.  相似文献   

8.
Reciprocal specialization in interspecific interactions, such as plant-pollinator mutualisms, increases the probability that either party can have detrimental effects on the other without the interaction being dissolved. This should be particularly apparent in obligate mutualisms, such as those that exist between yucca and yucca moths. Female moths collect pollen from yucca flowers, oviposit into floral ovaries, and then pollinate those flowers. Yucca moths, which are the sole pollinators of yuccas, impose a cost in the form of seed consumption by the moth larvae. Here we ask whether there also is a genetic cost through selfish moth behavior that may lead to high levels of self fertilization in the yuccas. Historically, it has been assumed that females leave a plant immediately after collecting pollen, but few data are available. Observations of a member of the Tegeticula yuccasella complex on Yucca filamentosa revealed that females remained on the plant and oviposited in 66% of all instances after observed pollen collections, and 51% of all moths were observed to pollinate the same plant as well. Manual cross and self pollinations showed equal development and retention of fruits. Subsequent trials to assess inbreeding depression by measuring seed weight, germination date, growth rate, and plant mass at 5 months revealed significant negative effects on seed weight and germination frequency in selfed progeny arrays. Cumulative inbreeding depression was 0.475, i.e., fitness of selfed seeds was expected to be less than half that of outcrossed seeds. Single and multilocus estimates of outcrossing rates based on allozyme analyses of open-pollinated progeny arrays did not differ from 1.0. The discrepancy between high levels of behavioral self-pollination by the moths and nearly complete outcrossing in mature seeds can be explained through selective foreign pollen use by the females, or, more likely, pollen competition or selective abortion of self-pollinated flowers during early stages of fruit development. Thus, whenever the proportion of pollinated flowers exceeds the proportion that can be matured to ripe fruit based on resource availability, the potential detrimental genetic effects imposed through geitonogamous pollinations can be avoided in the plants. Because self-pollinated flowers have a lower probability of retention, selection should act on female moths to move among plants whenever moth density is high enough to trigger abortion. Received: 18 March 1996 \Accepted: 30 July 1996  相似文献   

9.
Host specialization is an important mechanism of diversification among phytophagous insects, especially when they are tightly associated with their hosts. The well-known obligate pollination mutualism between yucca moths and yuccas represent such an association, but the degree of host specificity and modes of specialization in moth evolution is unclear. Here we use molecular tools to test the morphology-based hypothesis that the moths pollinating two yuccas, Yucca baccata and Y. schidigera, are distinct species. Host specificity was assessed in a zone of sympatry where the hosts are known to hybridize. Because the moths are the only pollinators, the plant hybrids are evidence that the moths occasionally perform heterospecific pollination. Nucleotide variation was assessed in a portion of the mitochondrial gene COI, and in an intron within a nuclear lysozyme gene. Moths pollinating Y. baccata and Y. schidigera were inferred to be genetically isolated because there was no overlap in alleles at either locus, and all but one of the moths was found on their native host in the hybrid zone. Moreover, genetic structure was very weak across the range of each moth species: estimates of FST for the lysozyme intron were 0.043 (SE = ± 0.004) and 0.021 (SE = ± 0.006) for the baccata and schidigera pollinators, respectively; estimated FST for COI in the baccata moths was 0.228 (± 0.012), whereas schidigera pollinators were fixed for a single allele. These results reveal a high level of migration among widely separated moth populations. We predict that pollen-mediated gene flow among conspecific yuccas is considerable and hypothesize that geographic separation is a limited barrier both for yuccas and for yucca moths.  相似文献   

10.
The determinants of a species' geographic distribution are a combination of both abiotic and biotic factors. Environmental niche modeling of climatic factors has been instrumental in documenting the role of abiotic factors in a species' niche. Integrating this approach with data from species interactions provides a means to assess the relative roles of abiotic and biotic components. Here, we examine whether the high host specificity typically exhibited in the active pollination mutualism between yuccas and yucca moths is the result of differences in climatic niche requirements that limit yucca moth distributions or the result of competition among mutualistic moths that would co‐occur on the same yucca species. We compared the species distribution models of two Tegeticula pollinator moths that use the geographically widespread plant Yucca filamentosa. Tegeticula yuccasella occurs throughout eastern North America whereas T. cassandra is restricted to the southeastern portion of the range, primarily occurring in Florida. Species distribution models demonstrate that T. cassandra is restricted climatically to the southeastern United States and T. yuccasella is predicted to be able to live across all of eastern North America. Data on moth abundances in Florida demonstrate that both moth species are present on Y. filamentosa; however, T. cassandra is numerically dominant. Taken together, the results suggest that moth geographic distributions are heavily influenced by climate, but competition among pollinating congeners will act to restrict populations of moth species that co‐occur.  相似文献   

11.
The interaction between yucca plants and yucca moths has been one of the focal model systems investigated in the study of pollination mutualism and coevolution, especially in terms of understanding the prevention of overexploitation by mutualist partners. Yuccas have the ability to assess the number of eggs placed by pollinators into their ovaries, and can preferentially abort those flowers that would have many moth larvae consuming yucca seeds. Previous phylogenetic research identified a rapid radiation of moth species that corresponded with shifts in the interaction with their host plants. These shifts led to the evolution of moth species that circumvent the egg detection method used by yuccas to limit seed damage. In particular, some pollinator species deposit their eggs so that they are undetectable by the plants, whereas other species are ‘cheaters’ that have lost the ability to pollinate, yet deposit eggs into developing fruit rather than flowers. The evolution of these new species happened so quickly that the phylogeny of the moths has remained unresolved despite repeated attempts with standard Sanger sequencing of mtDNA loci and AFLP marker generation. Here, we use extensive analyses of RAD‐seq data to determine the phylogenetic relationships among yucca moth species. The results provide a robust phylogenetic framework that identifies the evolutionary relationships among shifts in egg‐laying strategies, as well as determining the closest pollinating relatives to the cheater species. Based on the obtained phylogeny, a shift in egg‐laying strategy that avoided the overexploitation regulatory mechanism used by yucca plants was a precursor for the evolution of two species with cheating behaviour.  相似文献   

12.
Anna Westerbergh 《Oikos》2004,105(3):564-574
Seed predator/pollinator and host plant interactions, which may be considered as antagonistic, have the potential to provide good model systems for the study of the early stages of evolution towards mutualism. I describe a relationship between a seed predator, the geometrid moth Perizoma affinitatum , and the dioecious plant Silene dioica . The moth is an obligate seed predator on its host plant. The searching and ovipositing behaviour of the female moths, number of eggs deposited per flower, the pollinating ability of the moths and the seed consumption by the larvae are described as different parameters and studied in two Finnish coastal populations. A high pollinating ability and limited seed consumption by the predator was found and discussed in relation to fitness models of P. affinitatum and S. dioica . In a mutualistic relationship there must be a balance between the costs and benefits so that the seed production by the moths is larger than the seed consumption by the larvae, given a net seed output larger than zero. The data of the parameters included in a seed production/consumption model give a positive seed output when the proportion of S. dioica flowers pollinated by other non-predating insects is less than 60%. Accordingly, even if P. affinitatum would become the exclusive pollinator it would not endanger the survival of the host plant and both partners would benefit from this interaction. Limited seed consumption, high pollinating ability and host specificity as seen in the P. affinitatum and S. dioica interaction are considered to have been important pre-existing qualities in the evolution of the obligate mutualisms between yucca and yucca moths and fig and fig wasps. In isolated serpentine populations where the gene flow is restricted and co-pollinators are rare the interaction between P. affinitatum and S. dioica has the potential to shift from parasitism to mutualism.  相似文献   

13.
The pollination mutualism between yucca moths and yuccas highlights the potential importance of host plant specificity in insect diversification. Historically, one pollinator moth species, Tegeticula yuccasella, was believed to pollinate most yuccas. Recent phylogenetic studies have revealed that it is a complex of at least 13 distinct species, eight of which are specific to one yucca species. Moths in the closely related genus Prodoxus also specialize on yuccas, but they do not pollinate and their larvae feed on different plant parts. Previous research demonstrated that the geographically widespread Prodoxus quinquepunctellus can rapidly specialize to its host plants and may harbor hidden species diversity. We examined the phylogeographic structure of P. quinquepunctellus across its range to compare patterns of diversification with six coexisting pollinator yucca moth species. Morphometric and mtDNA cytochrome oxidase I sequence data indicated that P. quinquepunctellus as currently described contains two species. There was a deep division between moth populations in the eastern and the western United States, with limited sympatry in central Texas; these clades are considered separate species and are redescribed as P. decipiens and P. quinquepunctellus (sensu stricto), respectively. Sequence data also showed a lesser division within P. quinquepunctellus s.s. between the western populations on the Colorado Plateau and those elsewhere. The divergence among the three emerging lineages corresponded with major biogeographic provinces, whereas AMOVA indicated that host plant specialization has been relatively unimportant in diversification. In comparison, the six pollinator species comprise three lineages, one eastern and two western. A pollinator species endemic to the Colorado Plateau has evolved in both of the western lineages. The east-west division and the separate evolution of two Colorado Plateau pollinator species suggest that similar biogeographic factors have influenced diversification in both Tegeticula and Prodoxus. For the pollinators, however, each lineage has produced a monophagous species, a pattern not seen in P. quinquepunctellus.  相似文献   

14.
Marr DL  Pellmyr O 《Oecologia》2003,136(2):236-243
The long-term persistence of obligate mutualisms (over 40 Mya in both fig/fig wasps and yucca/yucca moths) raises the question of how one species limits exploitation by the other species, even though there is selection pressure on individuals to maximize fitness. In the case of yuccas, moths serve as the plant's only pollinator, but eggs laid by the moths before pollination hatch into larvae that consume seeds. Previous studies have shown that flowers with high egg loads are more likely to abscise. This suggests that yucca flowers can select against moths that lay many eggs per flower through selective abscission of flowers; however, it is not known how yucca moths trigger floral abscission. We tested how the moth Tegeticula yuccasella triggers floral abscission during oviposition in Yucca filamentosa by examining the effects of ovipositor insertion and egg laying on ovule viability and floral abscission. Eggs are not laid at the site of ovipositor insertion: we used this separation to test whether wounded ovules were more closely associated with the ovipositor site or an egg's location. Using a tetrazolium stain to detect injured ovules, we determined whether the number of ovipositions affected the number of wounded ovules in naturally pollinated flowers. Two wounding experiments were used to test the effect of mechanical damage on the probability of floral abscission. The types of wounds in these experiments mimicked two types of oviposition-superficial oviposition in the ovary wall and oviposition into the locular cavity-that have been observed in species of Tegeticula. The effect of moth eggs on ovule viability was experimentally tested by culturing ovules in vitro, placing moth eggs on the ovules, and measuring changes in ovule viability with a tetrazolium stain. We found that ovules were physically wounded during natural oviposition. Ovules showed a visible wounding response in moth-pollinated flowers collected 7-12 h after oviposition. Exact location of wounded ovules relative to eggs and oviposition scars, as well as results from the artificial wounding experiments, showed that the moth ovipositor inflicts mechanical damage on the ovules. Significantly higher abscission rates were observed in artificially wounded flowers in which only 4-8% of the ovules were injured. Eggs did not affect ovule viability as measured by the tetrazolium stain. These results suggest that physical damage to ovules caused by ovipositing is sufficient to explain selective fruit abscission. Whether injury as a mechanism of selective abscission in yuccas is novel or a preadaptation will require further study.  相似文献   

15.
Yuccas initiate far more flowers than they can mature as fruit, thereby providing opportunities for them to mature flowers of the highest quality. Flower quality in yuccas has both intrinsic and extrinsic components. Intrinsic components relate to flower morphology and inflorescence architecture. Yucca moths (Tegeticula spp., Incurvariidae), the sole pollinators and primary seed predators of most yuccas (Yucca spp., Agavaceae), mediate extrinsic components of flower quality through their ovipositions in flowers, and the quantity and quality of pollen that they transfer. In addition, intrinsic and extrinsic components interact as a function of flowering phenology and moth activity within inflorescences.
We investigated selective abscission of flowers in Y. kanabensis with respect to various combinations of intrinsic and extrinsic factors. First, we considered the effect of high and low pollen loads delivered to different subsets of flowers and in different presentation orders. In the absence of moth ovipositions, Y. kanabensis is sensitive to the amount of pollen that moths deliver and tends to retain high pollen flowers, even when all flowers receive sufficient pollen for full fertilization. However, pollen delivery sequence and the position of flowers with an inflorescence modify this high pollen effect. We then considered the interplay between high and low pollen combined with moth ovipositions and found that the number of ovipositions dominated the pollen effect. Finally, we considered number of ovipositions in conjunction with different flowers in the blooming sequence while controlling pollen levels and found that the clear effect of ovipositions on flower fate can be tempered by where the flower is in the blooming sequence.
These results have implications for the regulation of the mutualism between yuccas and yucca moths, indicating that yuccas are capable of regulating costs, retaining flowers of relative high quality and selectively abscising the rest. Yucca sensitivity to several intrinsic and extrinsic factors allows the plant to respond flexibly to the pollination environment and several species of moths.  相似文献   

16.
Plant-insect associations have served as models for investigations of coevolution and the influence of biotic interactions on diversification. The pollination association between yuccas and yucca moths is a classic example of an obligate mutualism often suggested to have been affected by coevolution. Recent work has shown high host specificity in pollinating yucca moths, and here we use Tegeticula yuccasella, the species with the widest diet breadth, to ask how host specificity and isolation by distance contribute to specialization. Isolation by distance at a regional scale was observed in nucleotide variation within the mitochondrial gene cytochrome oxidase I (COI) (r =.294; P =.003). Host-related genetic structure (F(ct) = 0.08) was found to be slightly lower than the level of structure observed between eastern and western moth populations (F(ct) = 0.096). However, 56% of the COI haplotypes sampled from moths on Yucca filamentosa mapped to a host-specific clade in the haplotype network. Taken together, these results suggest that differentiation among T. yuccasella populations on alternative hosts is slight, but gene flow is influenced by both host association and geographic distance.  相似文献   

17.
The origins of obligate pollination mutualisms, such as the classic yucca–yucca moth association, appear to require extensive trait evolution and specialization. To understand the extent to which traits truly evolved as part of establishing the mutualistic relationship, rather than being pre‐adaptations, we used an expanded phylogenetic estimate with improved sampling of deeply‐diverged groups to perform the first formal reconstruction of trait evolution in pollinating yucca moths and their nonpollinating relatives. Our analysis demonstrates that key life‐history traits of yucca moths, including larval feeding in the floral ovary and the associated specialized cutting ovipositor, as well as colonization of woody monocots in xeric habitats, may have been established before the obligate mutualism with yuccas. Given these pre‐existing traits, novel traits in the mutualist moths are limited to the active pollination behaviours and the tentacular appendages that facilitate pollen collection and deposition. These results suggest that a highly specialized obligate mutualism was built on the foundation of pre‐existing interactions between early Prodoxidae and their host plants, and arose with minimal trait evolution. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 847–855.  相似文献   

18.
Florivores are present in many pollination systems and can have direct and indirect effects on both plants and pollinators. Although the impact of florivores are commonly examined in facultative pollination mutualisms, their effects on obligate mutualism remain relatively unstudied. Here, we used experimental manipulations and surveys of naturally occurring plants to assess the effect of florivory on the obligate pollination mutualism between yuccas and yucca moths. Yucca filamentosa (Agavaceae) is pollinated by the moth Tegeticula cassandra (Lepidoptera: Prodoxidae), and the mutualism also attracts two florivores: a generalist, the leaf-footed bug Leptoglossus phyllopus (Hemiptera: Coreidae), and a specialist, the beetle Hymenorus densus (Coleoptera: Tenebrionidae). Experimental manipulations of leaf-footed bug densities on side branches of Y. filamentosa inflorescences demonstrated that feeding causes floral abscission but does not reduce pollen or seed production in the remaining flowers. Similar to the leaf-footed bugs, experimental manipulations of beetle densities within individual flowers demonstrated that beetle feeding also causes floral abscission, but, in addition, the beetles also cause a significant reduction in pollen availability. Path analyses of phenotypic selection based on surveys of naturally occurring plants revealed temporal variation in the plant traits important to plant fitness and the effects of the florivores on fitness. Leaf-footed bugs negatively impacted fitness when fewer plants were flowering and leaf-footed bug density was high, whereas beetles had a positive effect on fitness when there were many plants flowering and their densities were low. This positive effect was likely due to adult beetles consuming yucca moth eggs while having a negligible effect on floral abscission. Together, the actions of both florivores either augmented the relationship of plant traits and fitness or slightly weakened the relationship. Overall, the results suggest that, although florivores are always present during flowering, the impact of florivores on phenotypic selection in yuccas is strongly mitigated by changes in their densities on plants from year to year. In contrast, both florivores consistently influenced pollinator larval mortality through floral abscission, and H. densus beetles additionally via the consumption of pollinator eggs.  相似文献   

19.
Abstract.  1. Although the moth–yucca mutualism is often studied as a pairwise interaction, yucca plants are also the sole host for a variety of other visitors. One of these additional visitors is a stem-boring moth, Prodoxus quinquepunctellus.
2. In this study, it is shown how the reproductive success of Prodoxus indirectly depends on the interactions between yuccas and their pollinators ( Tegeticula , Prodoxidae) as well as the indirect effects of ants and aphids.
3. Aggressive wood ants foraging on yuccas will attack adult Prodoxus moths while attempting to oviposit. This reduces the number of eggs laid in yucca stalks, leading to fewer larvae feeding in the stalks.
4. Once in the stalk, the survival of Prodoxus eggs/larvae depends upon the rate at which the flowering stalks dry out during fruit maturation. Portions of the stalk above the highest fruit dry out quickly and survivorship approaches zero in these dry sections, while larvae in green sections of the flowering stalk have significantly higher survival rates. The presence of aphids feeding on the stalk slows down the rate of stalk drying and could lead to increased survival of Prodoxus larvae.
5. Overall, ants have strong indirect effects on P. quinquepunctellus by controlling how many eggs are laid in the stalk and by influencing the distribution of aphids. However, it is primarily the presence and position of the fruit that can affect larval survivorship, and fruit position is a function of pollinator visits and resource limitation. These complex interactions illustrate the importance of studying the yucca–moth mutualism in a community context.  相似文献   

20.
Bao  & Addicott 《Ecology letters》1998,1(3):155-159
Yucca baccata cheats in its obligate pollination/seed predation mutualism with yucca moths. Although all individuals use the pollination services of yucca moths, many individuals do not reciprocate in sustaining yucca moth larvae. Cheating is associated with the morphology of Y. baccata pistils. In Y. baccata , the apex of the ovary contains only inviable ovules, and there are two distinct flower types, one of which has twice as many potentially viable ovules as the other. Because yucca moths oviposit at the apex of Y. baccata ovaries, larvae in flowers with few viable ovules fail to encounter viable ovules and therefore perish. Inflorescences generally have just one flower type, implying that some individuals cheat whereas others maintain the yucca moth population. Our most surprising observation, however, is that although the proportion of cheaters should be low, over 70% of Y. baccata individuals cheat. We hypothesize that both density- and frequency-dependent processes maintain a balance of cheaters and noncheaters in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号