首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life‐history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per‐clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges.  相似文献   

2.
Macroevolutionary theory predicts high rates of evolution should occur early in a clade's history as species exploit ecological opportunity. Evidence from the fossil record has shown a high prevalence of early bursts in morphological evolution, but recent work has provided little evidence for early high rates in the evolution of extant clades. Here, I test the prevalence of early bursts in extant data using phylogenetic comparative methods. Existing models are extended to allow a shift from a background Brownian motion (BM) process to an early burst process within subclades of phylogenies, rather than an early burst being applied to an entire phylogenetic tree. This nested early burst model is compared to other modes of evolution that can occur within subclades, such as evolution with a constraint (Ornstein‐Uhlenbeck model) and nested BM rate shift models. These relaxed models are validated using simulations and then are applied to body size evolution of three major clades of amniotes (mammals, squamates and aves) at different levels of taxonomic organization (order, family). Applying these unconstrained models greatly increases the support for early bursts within nested subclades, and so early bursts are the most common model of evolution when only one shift is analysed. However, the relative fit of early burst models is worse than models that allow for multiple shifts of the BM or OU process. No single‐shift or homogenous model is superior to models of multiple shifts in BM or OU evolution, but the patterns shown by these multirate models are generally congruent with patterns expected from early bursts.  相似文献   

3.
Abstract What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister‐clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.  相似文献   

4.
The evolutionary origins of Madagascar''s biodiversity remain mysterious despite the fact that relative to land area, there is no other place with consistently high levels of species richness and endemism across a range of taxonomic levels. Most efforts to explain diversification on the island have focused on geographical models of speciation, but recent studies have begun to address the island''s accumulation of species through time, although with conflicting results. Prevailing hypotheses for diversification on the island involve either constant diversification rates or scenarios where rates decline through time. Using relative-time-calibrated phylogenies for seven endemic vertebrate clades and a model-fitting framework, I find evidence that diversification rates have declined through time on Madagascar. I show that diversification rates have clearly declined throughout the history of each clade, and models invoking diversity-dependent reductions to diversification rates best explain the diversification histories for each clade. These results are consistent with the ecological theory of adaptive radiation, and, coupled with ancillary observations about ecomorphological and life-history evolution, strongly suggest that adaptive radiation was an important formative process for one of the most species-rich regions on the Earth. These results cast the Malagasy biota in a new light and provide macroevolutionary justification for conservation initiatives.  相似文献   

5.
While global variation in taxonomic diversity is strongly linked to latitude, the extent to which morphological disparity follows geographical gradients is less well known. We estimated patterns of lineage diversification, morphological disparity and rates of phenotypic evolution in the Old World lizard family Lacertidae, which displays a nearly inverse latitudinal diversity gradient with decreasing species richness towards the tropics. We found that lacertids exhibit relatively constant rates of lineage accumulation over time, although the majority of morphological variation appears to have originated during recent divergence events, resulting in increased partitioning of disparity within subclades. Among subclades, tropical arboreal taxa exhibited the fastest rates of shape change while temperate European taxa were the slowest, resulting in an inverse relationship between latitudinal diversity and rates of phenotypic evolution. This pattern demonstrates a compelling counterexample to the ecological opportunity theory of diversification, suggesting an uncoupling of the processes generating species diversity and morphological differentiation across spatial scales.  相似文献   

6.
Ecological adaptive radiation theory predicts an increase in both morphological and specific diversification when organisms colonize new environments. Accordingly, bursts of morphological diversification, characterized by low within‐subclade morphological disparity, may be associated with these increases in speciation rates. Conversely, increasing species density, reduction in available habitat, or increasing extinction rates are expected to cause rates of diversification to decline. We test these hypotheses by examining the tempo and mode of speciation in the lampropeltinine snakes, a morphologically variable group that colonized the New World ~24 million years ago and radiated throughout the Miocene. We show that specific diversification increased early in the history of the group, and that most morphological variation is partitioned among, rather than within subclades. These patterns provide further evidence for the hypothesis that morphological variation tends to be strongly partitioned among lineages when clades undergo early bursts of species diversification. A reduction in speciation rates may be indicative of density dependent effects due to a saturation of available ecological opportunity, rather than increases in extinction rates at the onset of the Pleistocene/Pliocene glacial cycles. This evidence runs counter to the general Pleistocene species pump model.  相似文献   

7.
Taxonomic, morphological, and functional diversity are often discordant and independent components of diversity. A fundamental and largely unanswered question in evolutionary biology is why some clades diversify primarily in some of these components and not others. Dramatic variation in trunk vertebral numbers (14 to >300) among squamate reptiles coincides with different body shapes, and snake-like body shapes have evolved numerous times. However, whether increased evolutionary rates or numbers of vertebrae underlie body shape and taxonomic diversification is unknown. Using a supertree of squamates including 1375 species, and corresponding vertebral and body shape data, we show that increased rates of evolution in vertebral numbers have coincided with increased rates and disparity in body shape evolution, but not changes in rates of taxonomic diversification. We also show that the evolution of many vertebrae has not spurred or inhibited body shape or taxonomic diversification, suggesting that increased vertebral number is not a key innovation. Our findings demonstrate that lineage attributes such as the relaxation of constraints on vertebral number can facilitate the evolution of novel body shapes, but that different factors are responsible for body shape and taxonomic diversification.  相似文献   

8.
The characiform fishes of the Neotropics and Africa radiated remarkably in ecomorphology, but the macroevolutionary processes responsible for their biodiversity remain unexplored, and the degree to which their continental diversification parallels classic adaptive radiations remains untested. We reconstruct their diversification using a new fossil‐calibrated molecular phylogeny, dietary information, and geometric morphometrics. Though body shape diversified early in a manner consistent with an ancient continental adaptive radiation, trophic shifts did not always coincide with shape changes. With the notable exception of piscivores, lineages that converged in diet did not converge closely in body shape. Shifts in habitat or other variables likely influenced body shape evolution in addition to changes in diet, and the clade's history departs from many classic adaptive radiations in lakes or on islands, in which trophic convergence drives morphological convergence. The contrast between the Neotropical radiation's exhaustive exploration of morphospace and the more restrained diversification in Africa suggests a major role for contingency in characiform evolution, with the presence of cypriniform competitors in the Old World, but not the New, providing one possible explanation. Our results depict the clearest ecomorphological reconstruction to date for Characiformes and set the stage for studies further elucidating the processes underlying its diversification.  相似文献   

9.
Parallel evolutionary radiations in adjacent locations have been documented in many systems, but typically at limited geographical scales. Here, we compare patterns of evolutionary radiation at the global scale in iguanian lizards, the dominant clade of lizards. We generated a new time‐calibrated phylogeny including 153 iguanian species (based on mitochondrial and nuclear data) and obtained data on morphology and microhabitats. We then compared patterns of species diversification, morphological disparity, and ecomorphological relationships in the predominantly Old World and New World clades (Acrodonta and Pleurodonta, respectively), focusing on the early portions of these radiations. Acrodonts show relatively constant rates of species diversification and disparity over time. In contrast, pleurodonts show an early burst of species diversification and less‐than‐expected morphological disparity early in their history, and slowing diversification and increasing disparity more recently. Analyses including all species (with MEDUSA) suggest accelerated diversification rates in certain clades within both Acrodonta and Pleurodonta, which strongly influences present‐day diversity patterns. We also find substantial differences in ecomorphological relationships between these clades. Our results demonstrate that sister clades in different global regions can undergo very different patterns of evolutionary radiation over similar time frames. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

10.
The disparity in species richness among groups of organisms is one of the most pervasive features of life on earth. A number of studies have addressed this pattern across higher taxa (e.g. 'beetles'), but we know much less about the generality and causal basis of the variation in diversity within evolutionary radiations at lower taxonomic scales. Here, we address the causes of variation in species richness among major lineages of Australia's most diverse vertebrate radiation, a clade of at least 232 species of scincid lizards. We use new mitochondrial and nuclear intron DNA sequences to test the extent of diversification rate variation in this group. We present an improved likelihood-based method for estimating per-lineage diversification rates from combined phylogenetic and taxonomic (species richness) data, and use the method in a hypothesis-testing framework to localize diversification rate shifts on phylogenetic trees. We soundly reject homogeneity of diversification rates among members of this radiation, and find evidence for a dramatic rate increase in the common ancestor of the genera Ctenotus and Lerista. Our results suggest that the evolution of traits associated with climate tolerance may have had a role in shaping patterns of diversity in this group.  相似文献   

11.
Although discordance between taxonomic diversity and morphological disparity is common, little is known about the underlying dynamics that drive this decoupling. Early in the history of the Cambrian trilobite family Pterocephaliidae, there was an increase in taxonomic diversity and morphological diversity. As taxonomic diversity declined in the later history of the clade, range of variation stayed high and disparity continued to increase. However, per‐branch rates of morphological evolution estimated from a recent phylogeny decreased with time. Neither within‐trait nor within‐species variation increased or decreased, suggesting that the declining rates of morphological evolution were more likely related to ecological opportunity or niche partitioning, rather than increasing intrinsic constraints. This is further supported by evidence for increased biofacies associations throughout the time period. Thus, the high disparity seen at low taxonomic diversity late in the history of this clade was due to extinction – either random or targeting mean forms – rather than increased rates of morphological evolution. This pattern also provides a scenario that could account for instances of low taxonomic diversity but high morphological disparity in modern groups.  相似文献   

12.
Ehrlich and Raven proposed a model of coevolution where major host plant shifts of butterflies facilitate a burst of diversification driven by their arrival to a new adaptive zone. One prediction of this model is that reconstructions of historical diversification of butterflies should indicate an increase in diversification rate following major host shifts. Using reconstructed histories of 15 butterfly groups, I tested this prediction and found general agreement with Ehrlich and Raven''s model. Butterfly lineages with an inferred major historical host shift showed evidence of diversification rate variation, with a significant acceleration following the host shift. Lineages without an inferred major host shift generally agreed with a constant-rate model of diversification. These results are consistent with the view that host plant associations have played a profound role in the evolutionary history of butterflies, and show that major shifts to chemically distinct plant groups leave a historical footprint that remains detectable today.  相似文献   

13.
Long-term erosion and subsidence cause dramatic alterations in the physical and ecological features of oceanic islands. Although oceanic islands have been extensively used as models for the study of speciation, little attention has been given to investigating evolutionary patterns in old volcanic islands that have suffered severe climatic degradation. The spider genus Dysdera has diversified across the Canary Islands and has evolved endemisms in the low-elevation, xeric eastern islands, which sharply contrast with the younger, higher, and more humid western islands. A combined phylogenetic analysis of seven mitochondrial and nuclear genes reveals that the eastern Canaries were colonized twice, although only one lineage underwent in situ diversification. Origins of the speciose lineage remain obscure, but probably preceded diversification of present-day Iberian and North African species. A second colonization of the eastern Canaries from North Africa has occurred in more recent times. Molecular analyses reveal several instances of geographically coherent cryptic lineages further supported by morphometric evidence. Analyses of diversification rates suggest deceleration of diversification over the course of time, and this is compatible with increasing extinction rates due to drastic yet continuous ecological changes. Extinction may also explain incongruent patterns of morphological differentiation and species coexistence. Despite a general trend towards community impoverishment, there is also evidence for recent speciation events linked to ecological shifts, which may illustrate the origins of nonspeciose relic lineages on islands.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 589–615.  相似文献   

14.
Here, we advance novel uses of allometric spaces--multidimensional spaces specifically defined by allometric coefficients--with the goal of investigating the focal role of development in shaping the evolution of morphological disparity. From their examination, operational measures of allometric disparity can be derived, complementing standard signals of morphological disparity through an intuitive and process-oriented refinement of established analytical protocols used in disparity studies. Allometric spaces thereby become a promising context to reveal different patterns of evolutionary developmental changes and to assess their relative prevalence and importance. Such spaces offer a novel domain of investigation of phenotypic variation and should help in detecting large-scale trends, thus placing various macroevolutionary phenomena in an explicitly developmental context. Ammonoidea (Cephalopoda) at the Lower-Middle Jurassic transition were chosen as a case study to illustrate this methodological approach. We constructed two phenotypic spaces: a static, adult one (adult morphospace) and a dynamic, developmental one (allometric space). Comparative disparity analyses show a strikingly stable occupation in both spaces, despite extensive change in taxonomic composition. In contrast, disparity analyses of subclades reveal clearly distinct morphological and allometric disparity dynamics. Allometric approaches allow developmental insights into morphological diversification otherwise intractable from the analysis of adult morphospace alone.  相似文献   

15.
Diversification rates and evolutionary trajectories are known to be influenced by phenotypic traits and the geographic history of the landscapes that organisms inhabit. One of the most conspicuous traits in butterflies is their wing color pattern, which has been shown to be important in speciation. The evolution of many taxa in the Neotropics has also been influenced by major geological events. Using a dated, species‐level molecular phylogenetic hypothesis for Preponini, a colorful Neotropical butterfly tribe, we evaluated whether diversification rates were constant or varied through time, and how they were influenced by color pattern evolution and biogeographical events. We found that Preponini originated approximately 28 million years ago and that diversification has increased through time consistent with major periods of Andean uplift. Even though some clades show evolutionarily rapid transitions in coloration, contrary to our expectations, these shifts were not correlated with shifts in diversification. Involvement in mimicry with other butterfly groups might explain the rapid changes in dorsal color patterns in this tribe, but such changes have not increased species diversification in this group. However, we found evidence for an influence of major Miocene and Pliocene geological events on the tribe''s evolution. Preponini apparently originated within South America, and range evolution has since been dynamic, congruent with Andean geologic activity, closure of the Panama Isthmus, and Miocene climate variability.  相似文献   

16.
Aim Using a global data base of the distribution of extant bird species, we examine the evidence for spatial variation in the evolutionary origins of contemporary avian diversity. In particular, we assess the possible role of the timing of mountain uplift in promoting diversification in different regions. Location Global. Methods We mapped the distribution of avian richness at four taxonomic levels on an equal‐area 1° grid. We examined the relationships between richness at successive taxonomic levels (e.g. species richness vs. genus richness). We mapped the residuals from linear regressions of these relationships to identify areas that are exceptional in the number of lower taxa relative to the number of higher taxa. We use generalized least squares models to test the influence of elevation range and temperature on lower‐taxon richness relative to higher‐taxon richness. Results Peaks of species richness in the Neotropics were congruent with patterns of generic richness, whilst peaks in Australia and the Himalayas were congruent with patterns of both genus and family richness. Hotspots in the Afrotropics did not reflect higher‐taxon patterns. Regional differences in the relationship between richness at successive taxonomic levels revealed variation in patterns of taxon co‐occurrence. Species and genus co‐occurrence was positively associated with elevational range across much of the world. Taxon occurrence in the Neotropics was associated with a positive interaction between elevational range and temperature. Conclusions These results demonstrate that contemporary patterns of richness show different associations with higher‐taxon richness in different regions, which implies that the timing of historical effects on these contemporary patterns varies across regions. We suggest that this is due to dispersal limitation and phylogenetic constraints on physiological tolerance limits promoting diversification. We speculate that diversification rates respond to long‐term changes in the Earth's topography, and that the role of tropical mountain ranges is implicated as a correlate of contemporary diversity, and a source of diversification across avian evolutionary history.  相似文献   

17.
Adaptive radiations are central to macroevolutionary theory. Whether triggered by acquisition of new traits or ecological opportunities arising from mass extinctions, it is debated whether adaptive radiations are marked by initial expansion of taxic diversity or of morphological disparity (the range of anatomical form). If a group rediversifies following a mass extinction, it is said to have passed through a macroevolutionary bottleneck, and the loss of taxic or phylogenetic diversity may limit the amount of morphological novelty that it can subsequently generate. Anomodont therapsids, a diverse clade of Permian and Triassic herbivorous tetrapods, passed through a bottleneck during the end-Permian mass extinction. Their taxic diversity increased during the Permian, declined significantly at the Permo–Triassic boundary and rebounded during the Middle Triassic before the clade''s final extinction at the end of the Triassic. By sharp contrast, disparity declined steadily during most of anomodont history. Our results highlight three main aspects of adaptive radiations: (i) diversity and disparity are generally decoupled; (ii) models of radiations following mass extinctions may differ from those triggered by other causes (e.g. trait acquisition); and (iii) the bottleneck caused by a mass extinction means that a clade can emerge lacking its original potential for generating morphological variety.  相似文献   

18.
Adaptive radiations, bouts of morphological divergence coupled with taxonomic proliferation, underpin biodiversity. The most widespread model of radiations assumes a single round, or 'early burst', of elevated phenotypic divergence followed by a decline in rates of change or even stasis. A vertebrate-specific model proposes separate stages: initial divergence in postcranial traits related to habitat use, followed by diversification in cranial morphology linked to trophic demands. However, there is little empirical evidence for either hypothesis. Here, we show that, contrary to both models, separate large-scale radiations of actinopterygian fishes proceeded through distinct cranial and later postcranial stages of morphological diversification. Early actinopterygians and acanthomorph teleosts dispersed in cranial morphospace immediately following the end-Devonian extinction and the Cretaceous origin of the acanthomorph clade, respectively. Significant increases in postcranial morphological variation do not occur until one interval after cranial diversification commenced. Therefore, our results question the universality of the 'general vertebrate model'. Based on the results of model-fitting exercises and application of the divergence order test, we find little evidence that the early onset of cranial diversification in these two radiations is due to elevated rates of cranial change relative to postcranial change early in their evolutionary histories. Instead, postcranial and cranial patterns are best fit by an Ornstein-Uhlenbeck model, which is characterized by constant evolutionary rates coupled with a strong central tendency. Other groups have been reported to show early saturation of cranial morphospace or tropic roles early in their histories, but it is unclear whether these patterns are attributable to dynamics similar to those inferred for our two model radiations.  相似文献   

19.
20.
Sexual selection may facilitate genetic isolation among populations and result in increased rates of diversification. As a mechanism driving diversification, sexual selection has been invoked and upheld in numerous empirical studies across disparate taxa, including birds, plants and spiders. In this study, we investigate the potential impact of sexual selection on the tempo and mode of ponyfish evolution. Ponyfishes (Leiognathidae) are bioluminescent marine fishes that exhibit sexually dimorphic features of their unique light-organ system (LOS). Although sexual selection is widely considered to be the driving force behind ponyfish speciation, this hypothesis has never been formally tested. Given that some leiognathid species have a sexually dimorphic LOS, whereas others do not, this family provides an excellent system within which to study the potential role of sexual selection in diversification and morphological differentiation. In this study, we estimate the phylogenetic relationships and divergence times for Leiognathidae, investigate the tempo and mode of ponyfish diversification, and explore morphological shape disparity among leiognathid clades. We recover strong support for a monophyletic Leiognathidae and estimate that all major ponyfish lineages evolved during the Paleogene. Our studies of ponyfish diversification demonstrate that there is no conclusive evidence that sexually dimorphic clades are significantly more species rich than nonsexually dimorphic lineages and that evidence is lacking to support any significant diversification rate increases within ponyfishes. Further, we detected a lineage-through-time signal indicating that ponyfishes have continuously diversified through time, which is in contrast to many recent diversification studies that identify lineage-through-time patterns that support mechanisms of density-dependent speciation. Additionally, there is no evidence of sexual selection hindering morphological diversity, as sexually dimorphic taxa are shown to be more disparate in overall shape morphology than nonsexually dimorphic taxa. Our results suggest that if sexual selection is occurring in ponyfish evolution, it is likely acting only as a genetic isolating mechanism that has allowed ponyfishes to continuously diversify over time, with no overall impact on increases in diversification rate or morphological disparity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号