首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our observations on the major ampullate gland of the spider Nephila edulis indicate that the exceptionally tough and strong core and coat composite structure of the dragline thread is formed by the co-drawing of two feedstocks through a single die. The cuticle that lines the gland's duct has the structure of an advanced hollow fibre dialysis membrane and is thought to facilitate a rapid removal of water and change in ionic composition involved in the spinning process. A structure previously termed the 'valve' is thought to advance the broken thread and act as a pump to restart spinning after the accidental internal rupture of a thread. Together, these observations indicate that the spider silk production pathway is highly optimised for the production of silk threads and shows considerable biomimetic potential.  相似文献   

2.
Although many researches have revealed that liquid phase of silk in the ampulla is turning into the polymerized dragline silk fibers as the feedstock passes through the long duct, the exact mechanism has still been not fully understood. Spider's strongest silk fiber, dragline, is mainly produced in the large ampullate glands, the biggest silk gland in the abdomen with a distinctive yellow color. Morphologically, the duct of large ampullate gland is in its unique S‐shape with 2 loops dividing the entire duct into three limbs. In addition, the diameter of the duct showed radical decrease toward the nozzle of the duct. Therefore, it assumed that the duct is playing a significant role in the entire process of silk production allowing great strength. Here, we present some of the fine structural properties of the large ampullate gland duct in Nephila clavata using various visualizations techniques.  相似文献   

3.
We studied physiological conditions during the spinning of dragline silk by the garden cross spider, Araneus diadematus. Silk is converted from the liquid feedstock in the gland into a solid thread via a tapering tubular duct and exits at a spigot. The distal part of the tubule appears specialized for ion transport and the management of the pH inside the lumen. Thus, it appears that spider silk in vivo, like some industrial polymers in vitro, is spun through an acid bath.  相似文献   

4.
Hexagonal columnar liquid crystal in the cells secreting spider silk   总被引:3,自引:0,他引:3  
Knight D  Vollrath F 《Tissue & cell》1999,31(6):617-620
The liquid crystallinity of spider dragline silk dope is thought to be important for both the spinning process and the extreme mechanical properties of the final thread. Although the formation of the liquid crystalline units is poorly understood, it has been suggested that spider silk proteins are secreted in a random coil and then aggregate end-to-end into rod-shaped units to form supramolecular liquid crystals. However, evidence presented here from transmission electron microscopy indicates that coat protein of the dragline silk of a Nephila spider is stored as hexagonal columnar liquid crystals within the intracellular secretory vesicles. This implies that this component is already folded into short rods within the gland cells and forms molecular rather than supramolecular liquid crystals.  相似文献   

5.
Silkworm silk has outstanding mechanical properties despite being spun at room temperature and from aqueous solution. Although it has been proposed that fiber formation is mainly induced by shearing and extensional flow in the spinneret, the detailed structure and function of the spinning apparatus of Bombyx mori silkworms are still not fully elucidated. In this paper we describe three aspects of the functional microanatomy of the spinning apparatus: changes in the diameter of the silk gland duct with distance along the duct, how the birefringence of the fibroin changes as it flows down the duct, and the detailed three-dimensional structure of the silk press and related structures. The existence of a double escaped nematic liquid crystal texture in the fibroin in a region of the duct is described. After this region the birefringence suddenly disappeared until the start of an internal draw down taper which commenced just before the silk press. In the internal draw down taper the birefringence increased dramatically to an asymptotic value as a thread was drawn from the fibroin gel. The structure of the silk press suggests that it acts as a restriction die whose diameter can be regulated.  相似文献   

6.
The gland cells of Lyonet's gland, which is accessory to the silk gland in the silkworm larva, is characterized by the presence of complicated canaliculi bearing microvilli on their inner surface, large numbers of mitochondria and remarkably convoluted basal plasma membrane. On the other hand, the cell lacks the well-developed cytoplasmic membrane system such as rough- and smooth-surfaced endoplasmic reticula and Golgi bodies, though free ribosomes are numerous. Secretory vesicles are absent, and the canaliculi contain no dense material. From such ultrastructural observations, it was suggested that a possible role of the gland may be the exchange of the small molecules such as water and ions, rather than the hitherto supposed secretory role of a cementing sunstance of silk proteins. The lumen of the proximal part of the glandular duct contains a kind of proteinaceous substance which can be demonstrated histochemically and is regarded as similar to one of the silk proteins in the silk gland, not to the real product of the Lyonet's gland.  相似文献   

7.
Spinning an elastic ribbon of spider silk   总被引:3,自引:0,他引:3  
The Sicarid spider Loxosceles laeta spins broad but very thin ribbons of elastic silk that it uses to form a retreat and to capture prey. A structural investigation into this spider's silk and spinning apparatus shows that these ribbons are spun from a gland homologous to the major ampullate gland of orb web spiders. The Loxosceles gland is constructed from the same basic parts (separate transverse zones in the gland, a duct and spigot) as other spider silk glands but construction details are highly specialized. These differences are thought to relate to different ways of spinning silk in the two groups of spiders. Loxosceles uses conventional die extrusion, feeding a liquid dope (spinning solution) to the slit-like die to form a flat ribbon, while orb web spiders use an extrusion process in which the silk dope is processed in an elongated duct to produce a cylindrical thread. This is achieved by the combination of an initial internal draw down, well inside the duct, and a final draw down, after the silk has left the spigot. The spinning mechanism in Loxosceles may be more ancestral.  相似文献   

8.
The excretory duct of pyriform glands in Araneus diadematus is connected to the secretory sac through an intermediary cell ring. Apices of these cells bear thick, long microvilli and cytoplasmic extensions containing microtubules in bundles, some of which are derived from normal basal bodies. These finger-like extensions lie between the cuticular intima and the secretory product; they are thought to protect the intima and to initiate moulding of the silk thread. Structural features of the duct cells suggest that the latter play a role in the control of the water content of the silk glue which is restricted to the last portion of the duct where numerous nerve endings are inserted between cells. It is evident that duct structure and chemical and physical characteristics of silk are correlated in all spider silk glands.  相似文献   

9.
Dicko C  Kenney JM  Knight D  Vollrath F 《Biochemistry》2004,43(44):14080-14087
Unlike man-made fibers, the silks of spiders are spun from aqueous solutions and at atmospheric pressure in a process still poorly understood. The molecular mechanism of this process involves the conversion of a highly concentrated, predominantly disordered silk protein (spidroin) into beta-sheet-rich structures. To help store and transport the spidroins in solution, as well as probably control their conversion, a liquid crystalline arrangement is established in the storage region in the ampulla and persists into the duct. Although it has been suggested that changes in the concentration of hydrogen and metal ions play a role in the formation of the solid thread, there is no reported evidence that these ions influence the secondary structure of native spidroin in solution. Here, we demonstrate that pH values between approximately 3.5 and 4.5 induce a slow change of conformation from the disordered to the beta-sheet-rich form. We also report that Al(3+), K(+), and Na(+) ions induce similar changes in structure, while Ca(2+) and Mg(2+) stabilize the predominantly disorder state of the protein. Cs(+) and Li(+) have no apparent effect. Direct volumetric and spectrophotometric titration showed a pI of 4.22 +/- 0.33 and apparent pK values of 6.74 +/- 0.71 and 9.21 +/- 0.27, suggesting a mechanism for the effect of low pH on the protein and a rationale for the observed reduction in pH in the duct. We discuss the importance of these findings for the spinning process and the active role played by the spider to alter the kinetics of the transition.  相似文献   

10.
11.
The water, K+ and Na+ content of naturally produced major ampullate silk as well as silk mechanically drawn from the spider Argiope aurantia have been compared to that of the major ampullate gland. It is demonstrated that water is extracted by the major ampullate duct and that this process is accompanied by an exchange of K+ for Na+. The significance of these observations is discussed.  相似文献   

12.
13.
Diadromus pulchellus is a solitary ichneumonid parasitoid. Its only known host is the pupa of Acrolepiopsis assectella, a specialist herbivore of Allium species. D. pulchellus females parasitize A. assectella pupae within 48 h after the caterpillars spin their cocoon and begin to pupate. Having observed that the cocoon produced by the leek moth caterpillar stimulates parasitoid egg-laying and that caterpillar leaves a silk thread, we studied the hypothesis that silk thread might be involved in host-finding by the parasitoid. Behavioral tests showed that when D. pulchellus females encounter a host silk thread, they change directions, follow the thread, and quickly locate the host. These findings show that pupal parasitoids can use signals produced by their hosts at the developmental instar preceding the one that they parasitize.  相似文献   

14.
A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter.  相似文献   

15.
Abstract. Spider silks possess a remarkable combination of high tensile strength and extensibility that makes them among the toughest materials known. Despite the potential exploitation of these properties in biotechnology, very few silks have ever been characterized mechanically. This is due in part to the difficulty of measuring the thin diameters of silk fibers. The largest silk fibers are only 5–10 μm in diameter and some can be as fine as 50 nm in diameter. Such narrow diameters, coupled with the refraction of light due to the anisotropic nature of crystalline regions within silk fibers, make it difficult to determine the size of silk fibers. Here, we report upon a technique that uses polarized light microscopy (PLM) to accurately and precisely characterize the diameters of spider silk fibers. We found that polarized light microscopy is as precise as scanning electron microscopy (SEM) across repeated measurements of individual samples of silk and resulted in mean diameters that were ~0.10 μm larger than those from SEM. Furthermore, we demonstrate that thread diameters within webs of individual spiders can vary by as much as 600%. Therefore, the ability of PLM to non‐invasively characterize the diameters of each individual silk fiber used in mechanical tests can provide a crucial control for natural variation in silk diameters, both within webs and among spiders.  相似文献   

16.
The accessory glands of the male reproductive system of Campodea remyi (Apterygota : Diplura : Campodeidea) consist of similar glandular units, each of which is made of a long secretory cell with a sieve at the tip of its extracellular cavity and a cell forming the excretory canalicule. During the annual cycle of sexual activity, they show morphological differences in terms of their size and the number of secretory granules. When ecdysis occurs, the cuticle of the ejaculatory duct and canalicules, the sieves, and the apical part of the glandular cells disappear. The gland's secretory products make up the spermatophore stalks.  相似文献   

17.
This study provides comprehensive documentation of silk production in the pest moth Helicoverpa armigera from gland secretion to extrusion of silk thread. The structure of the silk glands, accessory structures and extrusion apparatus are reported. The general schema of the paired silk glands follows that found for Lepidoptera. Morphology of the duct, silk press, muscle attachments and spigot are presented as a three-dimensional reconstruction and the cuticular crescent-shaped profile of the silk press is demonstrated in both open and closed forms with attendant muscle blocks, allowing advances in our knowledge of how the silk press functions to regulate the extrusion of silk. Growth of the spigot across instars is documented showing a distinctive developmental pattern for this extrusion device. Its shape and structure are related to use and load-bearing activity.  相似文献   

18.
Spider silk protein refolding is controlled by changing pH   总被引:1,自引:0,他引:1  
Spidroins, the major silk proteins making up the spider's dragline silk, originate in two distinct tissue layers (A and B) in the spider's major ampullate gland. Formation of the complex thread from spidroins occurs in the lumen of the duct connected to the gland. Using pH-sensitive microelectrode probes, we showed that the spidroins traveling through the gland and duct experience a monotonic decrease in pH from 7.2 to 6.3. In addition, circular dichroism spectroscopy of material extracted from the gland showed a structural refolding concomitant with position in the gland and post-extraction changes in pH. We demonstrate that lowering the pH in vitro causes a dramatic conformational change in the protein from the A zone, converting it irreversibly from a coil to a predominantly beta-sheet structure. Furthermore, amino acid analyses have indicated that there are at least two distinct, though similar, proteins secreted in the A and B zones suggesting a potential factor in the progressive acidification as well as a pH sensitivity of the folding of spidroins in the gland. Thus, we provide, for the first time, a quantitative map of the pH value and position correlated with molecular structural folding in the silk gland characterizing the crucial role that pH plays in spider silk formation.  相似文献   

19.
20.
Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions) between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号