首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uroleucon ambrosiae collected from the eastern and the southwestern United States were studied in relation to host-plant probing. In the field, eastern aphids are highly specific on Ambrosia trifida, while southwestern aphids feed on Ambrosia trifida plus many other species in the family Asteraceae. Electrical penetration graphs of insects on the principal host, A. trifida, and an additional host of southwestern populations, Heterotheca subaxillaris, revealed regional differentiation in host-associated aphid behaviors, specifically in the first phase of subcuticular probing, and in phloem finding activities. Eastern aphids used A. trifidamore efficiently than southwestern aphids, but were demonstrably less vigorous in their probing activities on H. subaxillaris.  相似文献   

2.
Four species of western US Osmia (3 Cephalosmia) that are Asteraceae specialists (mesoleges) were observed using a stereotypical means of collecting pollen—abdominal drumming—to gather pollen from 21 flowering species representing nine tribes of Asteraceae. Abdominal drumming is a rapid dorso-ventral motion of the female’s abdomen (467 pats/min) used to directly collect and place pollen in the bee’s ventral scopa. A co-occurring generalist, O. lignaria, never drummed Asteraceae flowers for pollen, but instead used its legs to harvest pollen. Observed drumming by several other osmiines is noted. A different pollen-harvesting behavior, abdominal tapping, is described for two eucerine bees (Melissodes agilis and Svastra obliqua), both oligolectic for the Asteraceae. The behavior also involves a dorso-ventral motion, but they tap their distal abdominal venter against disk flowers at a slower tempo (304 taps/min). These females’ distal sternites have distinctly dense and long hair brushes for acquiring pollen by this behavior. Brief accounts of similar abdominal pollen gathering behaviors by other megachilids are summarized.  相似文献   

3.
《Animal behaviour》1988,36(3):733-740
The hypothesis that specialists have evolved behavioural adaptations to handle their preferred food types more efficiently than related generalist species was tested. Naive workers of the specialist bumblebee, Bombus consobrinus, were more efficient than those of generalist species in acquiring flower-handling skills on their specialty plant, Aconitum (monkshood). With no previous foraging experience, B. consobrinus workers began probing in the vicinity of the nectary and quickly located the nectar. Generalists, on the other hand, showed no predisposition toward correct foraging on Aconitum. They probed in the wrong places, and many gave up before finding the nectar.  相似文献   

4.
A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology.  相似文献   

5.
Species with broad ecological amplitudes with respect to a key focal resource, niche generalists, should maintain larger and more connected populations than niche specialists, leading to the prediction that nucleotide diversity will be lower and more subdivided in specialists relative to their generalist relatives. This logic describes the specialist-generalist variation hypothesis (SGVH). Some outbreeding species of Caenorhabditis nematodes use a variety of invertebrate dispersal vectors and have high molecular diversity. By contrast, Caenorhabditis japonica lives in a strict association and synchronized life cycle with its dispersal host, the shield bug Parastrachia japonensis, itself a diet specialist. Here, we characterize sequence variation for 20 nuclear loci to investigate how C. japonica''s life history shapes nucleotide diversity. We find that C. japonica has more than threefold lower polymorphism than other outbreeding Caenorhabditis species, but that local populations are not genetically disconnected. Coupled with its restricted range, we propose that its specialist host association contributes to a smaller effective population size and lower genetic variation than host generalist Caenorhabditis species with outbreeding reproductive modes. A literature survey of diverse organisms provides broader support for the SGVH. These findings encourage further testing of ecological and evolutionary hypotheses with comparative population genetics in Caenorhabditis and other taxa.  相似文献   

6.
Generalist species dominate urban ecosystems. The success of urban generalists is often related to a plastic diet and feeding traits that allow them to take advantage of a variety of food resources provided by humans in cities. The classification of a species as a generalist is commonly based on mean estimates of diet‐ and feeding‐related traits. However, there is increasing evidence that a generalist population can consist of individual specialists. In such cases, estimates based on mean can hide important individual variation that can explain trophic ecology and the success of urban dwellers. Here, we focus on guppies, Poecilia reticulata, a widespread alien fish species which has invaded both urban and non‐urban systems, to explore the effect of urbanization on individual diet and feeding morphology (cranium shape). Our results show that guppies in urban and non‐urban populations are not individual specialists, having a similar generalist diet despite the high population density. However, there is important individual variation in cranium shape which allow urban guppies to feed more efficiently on highly nutritious food. Our data suggest that individual variation in feeding efficiency can be a critical overlooked trait that facilitates the success of urban generalists.  相似文献   

7.
Dietary specialization is thought to be rare in mammalian herbivores because of limitations of their detoxification system in processing large doses of a single type of plant secondary compound (PSC). Therefore, in order to specialize on a single species of plant, mammalian herbivores must have a highly efficient detoxification system for the particular types of PSCs they ingest. Using microarray technology, we looked at the expression of hepatic genes of a dietary specialist, Neotoma stephensi, and a sympatric generalist, Neotoma albigula, in response to diets containing different levels of one-seeded juniper (Juniperus monosperma). We found large between species differences in gene expression, as well as large within species differences when specialists fed a low juniper diet (25% juniper) were compared to specialists fed their ecologically relevant level of juniper (70% juniper). We also tested the hypothesis that the specialist relies on less costly phase I detoxification enzymes more than phase II compared to the generalist. Although we found that the specialist had higher cumulative as well as average expression of phase I versus phase II enzymes, the generalist had a similar pattern of expression for phase I versus phase II enzymes.  相似文献   

8.
Glandular trichomes are conventionally viewed as a type of direct defense against herbivores that carry indirect costs associated with the exclusion of numerous predators. We tested the hypothesis that predators are ineffective on sticky plants using a predator that is adapted to sticky plants, the harpactorine assassin bug Pselliopus spinicollis Champion, and a common surrogate generalist predator in analogous studies, the coccinellid Hippodamia convergens Guerin. We tested their top–down effects on herbivores using sticky and non-sticky races of common madia plants (Asteraceae: Madia elegans) and their native herbivores, a noctuid moth (Noctuiidae: Heliothodes diminutiva Hodges) and an aphid (Aphididae: Uroleucon madia Swain). We report that both predators were effective at reducing herbivore abundances on sticky and non-sticky plants, with greater efficacy on sticky plants.  相似文献   

9.
1. Feeding behaviour of generalist and specialist predators is determined by a variety of trophic adaptations. Specialised prey‐capture adaptations allow specialists to catch relatively large prey on a regular basis. As a result, specialists might be adapted to exploit each item of prey more thoroughly than do generalists. 2. It was expected that obligatory specialist cursorial spiders would feed less frequently than generalists but for a longer time and, thus, that their foraging pause would be longer. First, the feeding frequencies of three generalist spider species (Cybaeodamus taim, Harpactea hombergi, Hersiliola sternbergsi) were compared with those three phylogenetically related specialist species: myrmecophagous Zodarion rubidum, and araneophagous Nops aff. variabilis and Palpimanus orientalis. 3. Generalists captured more prey, exploited each item of prey for a significantly shorter time, and had a shorter foraging pause than was the case for specialists. Generalists also gained significantly less relative amount of prey mass than did specialists. 4. Second, the study compared the prey DNA degradation rate in the gut of generalists and specialists by means of PCR. The degradation rate was not significantly different between specialists and generalists: the detectability half‐life was estimated to exist for 14.3 days after feeding. 5. This study shows that the feeding strategies of cursorial generalist and obligatory specialist spiders are different. Obligatory specialists have evolved a feeding strategy that is based on thorough exploitation of a few large prey, whereas generalists have evolved a strategy that is based on short exploitation of multiple small items of prey.  相似文献   

10.
1. Both the physiological efficiency (PE) hypothesis and the preference–performance (PP) hypothesis address the complex interactions between herbivores and host plants, albeit from different perspectives. The PE hypothesis contends that specialists are better physiologically adapted to their host plants than generalists. The PP hypothesis predicts that larvae perform best on the host plant preferred by ovipositing females. 2. This study tests components of both hypotheses using the specialist checkerspot, Euphydryas anicia, the generalist salt marsh caterpillar, Estigmene acrea, and host plants in the genus Penstemon, which are defended by iridoid glycosides. 3. In laboratory experiments, the generalist preferred and performed significantly better on the less well defended host plant species. This is consistent with results from a common garden experiment where the less well defended Penstemon species received more damage from the local community of generalists. Larvae of the specialist checkerspot preferred the more chemically defended species in the laboratory, but performed equally well on both hosts. However, field experiments demonstrated that adult checkerspot females preferred to oviposit on the less well defended host plant. 4. Components of the physiological efficiency hypothesis were supported in this system, as the specialist outperformed the generalist on the more iridoid glycoside‐rich host plant species. There was no support for the PP hypothesis, however, as there was no clear relationship between female preference in the field and offspring performance in the laboratory.  相似文献   

11.
Specialist herbivores are predicted to have evolved biotransformation pathways that can process large doses of secondary compounds from the plant species on which they specialize. It is hypothesized that this physiological specialization results in a trade-off such that specialists may be limited in ability to ingest novel plant secondary compounds (PSCs). In contrast, the generalist foraging strategy requires that herbivores alternate consumption of plant species and PSC types to reduce the possibility of over-ingestion of any particular PSC. The ability to behaviorally regulate is a key component of this strategy. These ideas underpin the prediction that in the face of novel PSCs, generalists should be better able to maintain body mass and avoid toxic consequences compared to specialists. We explored these predictions by comparing the feeding behavior of two herbivorous rodents: a juniper specialist, Neotoma stephensi, and a generalist, Neotoma albigula, fed diets with increasing concentrations of phenolic resin extracted from the creosote bush (Larrea tridentata), which produces a suite of PSCs novel to both species. The specialist lost more mass than the generalist during the 15-day trial. In addition, although the specialist and generalist both regulated phenolic resin intake by reducing meal size while on the highest resin concentration (4%), the generalist began to regulate intake on the 2% diet. The ability of the generalist to regulate intake at a lower PSC concentration may be the source of the generalist’s performance advantage over the specialist. These data provide evidence for the hypothesis that the specialist’s foraging strategy may result in behavioral as well as physiological trade-offs in the ability to consume novel PSCs.  相似文献   

12.
Two hypotheses have been proposed to explain the abundance–occupancy relationship (AOR) in parasites. The niche breadth hypothesis suggests that host generalists are more abundant and efficient at colonizing different host communities than specialists. The trade‐off hypothesis argues that host specialists achieve high density across their hosts' ranges, whereas generalists incur the high cost of adaptation to diverse immuno‐defence systems. We tested these hypotheses using 386 haemosporidian cytochrome‐b lineages (1894 sequences) recovered from 2318 birds of 103 species sampled in NW Africa, NW Iberia, W Greater Caucasus and Transcaucasia. The number of regions occupied by lineages was associated with their frequency suggesting the presence of AOR in avian Haemosporidia. However, neither hypothesis provided a better explanation for the AOR. Although the host generalist Plasmodium SGS1 was over three times more abundant than other widespread lineages, both host specialists and generalists were successful in colonizing all study regions and achieved high overall prevalence.  相似文献   

13.
The effects of agricultural intensification on vertebrate populations could vary depending on whether species are habitat specialists or habitat generalists. Organic farming practices are generally considered to be less intensive and more environmental friendly than conventional farming practices and, as a result, these two managements may impact on habitat specialists and habitat generalists in different ways. The effect of environmental and/or genetic stress on populations can be assessed using fluctuating asymmetry (FA) and body condition of animals. We predicted that populations of a specialist species, the Pampean grassland mouse (Akodon azarae) would have higher levels of FA and poorer body condition on conventional farms compared to populations of A. azarae on organic farms. In contrast, we predicted that populations of generalist species, the corn mouse (Calomys musculinus) and the small vesper mouse (Calomys laucha) would not show differences in FA or body condition between conventional and organic farms. We examined the expression of FA in the hind foot and used the scaled mass index as a surrogate for body condition. As predicted, we found higher FA in the habitat specialist (A. azarae) on conventional farms compared to organic farms, and found no differences in FA among the two generalist species (C. musculinus and C. laucha). However, we found no differences in body condition for the three studied species between the two managements. Our results suggest that the effect of farming practices on small mammals varies between habitat specialists and habitat generalists. The results of this study provide important insights for the study of asymmetries, both from biological and methodological perspectives. Our results support the idea that the level of FA may be used as an index to assess the effects of farming practices on vertebrate populations.  相似文献   

14.
Caterpillar ensembles were sampled on 16 species of shrubs from the family Asteraceae and the genus Piper (Piperaceae) in open and forest habitats in the Andean montane forest zone of southern Ecuador between August 2007 and May 2009. Trophic affiliations of caterpillars to the host plants were confirmed in feeding trials. Overall, species richness of herbivorous caterpillars was high (191 species across all plants), but varied strongly between ensembles associated with different plant species (2?C96 lepidopteran species per shrub species). Ensembles on Piper species were characterized by low effective species numbers and high dominance of one or two species of the Geometridae genus Eois Hübner. Low species number and high dominance were also found on latex-bearing Erato polymnioides, whereas ensembles on two other Asteraceae species were far more diverse and less strongly shaped by a few dominant species. The observed diversity patterns fit well to the concept that anti-herbivore defenses of plants are the major factors regulating associated insect ensembles. Local abundance and geographic range of host plants appear to have less influence. Lepidopteran species feeding on Asteraceae were found to be more generalistic than those feeding on Piper species. We conclude that caterpillar ensembles on most, but not all, studied plant species are defined by a small number of dominant species, which usually are narrow host specialists. This pattern was more distinct on Piper shrubs in forest understory, whereas Asteraceae in disturbed habitats had more open caterpillar ensembles.  相似文献   

15.
Background: Due to the dry continental climate, the mountains of eastern Ladakh are unglaciated up to 6200–6400 m, with relatively large areas of developed soils between 5600 and 6000 m covered by sparse subnival vegetation. However, there are no studies on the composition of plant assemblages from such extreme elevations, their microclimates, vertical distributions and adaptive strategies.

Aims: The subnival vegetation was described and the relationship between microclimate, species distribution and species functional traits was analysed.

Methods: In total, 481 vegetation samples from 91 permanent plots, a floristic database of Ladakh and extensive microclimate measurements were used. Measurements of 15 functional traits were made and their relationship with species distribution between 4600 and 6150 m was tested.

Results: The subnival zone was characterised by extreme diurnal temperature fluctuations, a short growing season (between 88 and 153 days) and low soil temperature during the growing season (between 2.9 °C and 5.9 °C). It hosted 67 species, mainly hemicryptophytes, and ranged from ca. 5600 m to the highest known occurrence of vascular plants in the region (6150 m). The most common plant families were Brassicaceae, Asteraceae, Poaceae, Fabaceae and Cyperaceae. Subnival specialists with narrow elevational ranges represented 42% of the flora; these species were shorter, had relatively higher water content and water-use efficiency and contained more nutrients and soluble carbohydrates than species with a wider elevational range.

Conclusions: The subnival vegetation of eastern Ladakh is dominated by generalist species with wide vertical ranges and not by high-elevation specialists. These findings, in view of the vast unglaciated areas available for range extension, suggest a relatively high resilience of the subnival flora to climate change in this region.  相似文献   

16.

Background  

This paper tests Vrba's resource-use hypothesis, which predicts that generalist species have lower specialization and extinction rates than specialists, using the 879 species of South American mammals. We tested several predictions about this hypothesis using the biomic specialization index (BSI) for each species, which is based on its geographical range within different climate-zones. The four predictions tested are: (1) there is a high frequency of species restricted to a single biome, which henceforth are referred to as stenobiomic species, (2) certain clades are more stenobiomic than others, (3) there is a higher proportion of biomic specialists in biomes that underwent through major expansion-contraction alternation due to the glacial-interglacial cycles, (4) certain combinations of inhabited biomes occur more frequently among species than do others.  相似文献   

17.
Two hypotheses, nutrient constraints and detoxification limitation, have been proposed to explain the lack of specialists among mammalian herbivores. The nutrient constraint hypothesis proposes that dietary specialization in mammalian herbivores is rare because no one plant can provide all requisite nutrients. The detoxification limitation hypothesis suggests that the mammalian detoxification system is incapable of detoxifying high doses of similar secondary compounds present in a diet of a single plant species. We experimentally tested these hypotheses by comparing the performance of specialist and generalist woodrats (Neotoma) on a variety of dietary challenges. Neotoma stephensi is a narrow dietary specialist with a single species, one-seeded juniper, Juniperus monosperma, comprising 85–95% of its diet. Compared with other plants available in the habitat, juniper is low in nitrogen and high in fiber, phenolics, and monoterpenes. The generalist woodrat, N. albigula, also consumes one-seeded juniper, but to a lesser degree. The nutrient constraint hypothesis was examined by feeding both species of woodrats a low-nitrogen, high-fiber diet similar to that found in juniper. We found no differences in body mass change, or apparent digestibility of dry matter or nitrogen between the two species of woodrats after 35 days on this diet. Moreover, both species were in positive nitrogen balance. We tested the detoxification limitation hypothesis by comparing the performance of the generalist and specialist on diets with and without juniper leaves, the preferred foliage of the specialist, as well as on diets with and without α-pinene, the predominant monoterpene in juniper. We found that on the juniper diet, compared with the specialist, the generalist consumed less juniper and lost more mass. Urine pH, a general indicator of overall detoxification processes, declined in both groups on the juniper diet. The generalist consumed half the toxin load of the specialist yet its urine pH was slightly lower. Moreover, the generalist consumed significantly less of the treatment with high concentrations of α-pinene compared to the control treatment, while the specialist consumed the same amount of food regardless of α-pinene concentration. For both groups, urine pH declined as levels of α-pinene in the diet increased. The generalist produced a significantly more acidic urine than the specialist on the treatment with the highest α-pinene concentration. Our results suggest that in this system, specialists detoxify plant secondary compounds differently than generalists and plant secondary compounds may be more important than low nutrient levels in maintaining dietary diversity in generalist herbivores. Received: 5 May 1999 / Accepted: 14 November 1999  相似文献   

18.
Species endemic to the tropical regions are expected to be vulnerable to future climate change due in part to their relatively narrow climatic niches. In addition, these species are more likely to have responded strongly to past climatic change, and this can be explored through phylogeographic analyses. To test the hypothesis that tropical specialists are more sensitive to climate change than climate generalists, we generated and analyse sequence data from mtDNA and ~2500 exons to compare scales of historical persistence and population fluctuation in two sister species of Australian rainbow skinks: the tropical specialist Carlia johnstonei and the climate generalist C. triacantha. We expect the tropical specialist species to have deeper and finer‐scale phylogeographic structure and stronger demographic fluctuations relative to the closely related climate generalist species, which should have had more stable populations through periods of harsh climate in the late Quaternary. Within C. johnstonei, we find that some populations from the northern Kimberley islands are highly divergent from mainland populations. In C. triacantha, one major clade occurs across the deserts and into the mesic Top End, and another occurs primarily in the Kimberley with scattered records eastwards. Where their ranges overlap in the Kimberley, both mitochondrial DNA and nuclear DNA suggest stronger phylogeographic structure and range expansion within the tropical specialist, whereas the climate generalist has minimal structuring and no evidence of recent past range expansion. These results are consistent with the hypothesis that tropical specialists are more sensitive to past climatic change.  相似文献   

19.
The ‘evolution of increased competitive ability’ (EICA) hypothesis states that reduced herbivory in the introduced range causes an evolutionary shift in resource allocation from herbivore defense to growth. Therefore, according to EICA, introduced genotypes are expected to grow more vigorously than conspecific native genotypes when cultivated under common standardized conditions. The EICA hypothesis also assumes that herbivores will perform better on introduced genotypes compared to native genotypes, because they are less well defended. However, selection for either defense or growth will depend on the type of defense (quantitative or qualitative) employed by the plant, and whether the plant is released from generalist or specialist herbivores. The predictions of the EICA hypothesis might be reversed if a plant experiences increased generalist herbivore pressure in the introduced range, and therefore invests more in qualitative defense. We examined this idea with the invasive perennial mustard, Lepidium draba. We grew a total of 16 populations of L. draba from both its native European and introduced western US ranges under common conditions in a greenhouse. We also tested for differences in plant resistance to the specialist herbivore, Psylliodes wrasei, by conducting a leaf disc feeding bioassay with native and introduced L. draba genotypes. Furthermore, we quantified the generalist herbivore load on L. draba in both ranges in order to assess the selection pressure for increased qualitative defense. Contrary to the original EICA prediction, all plant traits (biomass, number of shoots, length and diameter of longest leaf) tended to be greater for the native, rather than introduced L. draba genotypes. There was no significant difference in the proportion of leaf area consumed by the specialist herbivore between native and introduced genotypes. The generalist herbivore load on L. draba was significantly greater in the introduced range. Our data suggest that the EICA hypothesis does not explain the invasion success of L. draba in the US. Instead, we propose that the reduced vigor of introduced genotypes may be due to selection for increased defense against generalist herbivores in the introduced range.  相似文献   

20.
The enemy release hypothesis predicts that invasive plant species may benefit from a lack of top-down control by co-evolved herbivores, particularly specialists, in their new range. However, to benefit from enemy escape, invasive plants must also escape or resist specialist or generalist herbivores that attack related species in the introduced range. We compared insect herbivore damage on the exotic shrub, Lonicera maackii, the native congener Lonicera reticulata, and the native confamilial Viburnum prunifolium in North America. We also compared the laboratory preference and performance of a North American honeysuckle specialist sawfly (Zaraea inflata) and the performance of a widespread generalist caterpillar (Spodoptera frugiperda) on cut foliage from native and exotic Lonicera species. L. maackii received significantly lower amounts of foliar herbivory than L. reticulata across three seasons, while damage levels observed on V. prunifolium for two seasons was generally intermediate between L. reticulata and L. maackii. The specialist sawfly damaged L. reticulata heavily, but was not detected on L. maackii in the field. There were few statistical differences in the performance of sawfly larvae on L. reticulata and L. maackii, but the sawfly achieved higher pupal masses on L. reticulata than on L. maackii, and they strongly preferred L. reticulata over L. maackii when given a choice. The sawfly was unable to complete development on native L. sempervirens and non-native L. japonica. In contrast, the generalist caterpillar performed similarly on all Lonicera species. While L. maackii experienced little herbivory in the field compared to native relatives in the same habitat, laboratory assays indicate L. maackii appears to be a suitable host that escapes selection by the specialist, but L. japonica and L. sempervirens are highly resistant to it. These findings indicate that both enemy escape and resistance (to a specialist, but not a generalist herbivore) may contribute to the success of exotic Lonicera species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号