首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The weevil subfamily Scolytinae includes at least seven groups of regularly sib-mating species with extremely female-biased offspring sex ratios. The enigmatic SE-Asian bark beetle genus Ozopemon (25spp.) belong to the most diversified clade (>1400spp.) of such ancient inbreeding lineages. While males of all sib-mating scolytines are flightless, and are usually dwarfed versions of their larger sisters, the existence of males in Ozopemon has been a controversial issue. Some strangely modified male beetles, with fully developed aedeagus, strongly flattened pronotum and head, and 10-segmented larviform abdomen, were first described as males of O. brownei , but were later assigned to the Histeridae. With the new evidence provided here, based on DNA sequence data from mitochondrial and nuclear gene partitions, and examination of genitalic characters, we re-assign these males, as well as males for two more species, to Ozopemon . Neoteny evolved close to the origin of sib-mating and possibly haplodiploidy, but the transition to neoteny occurred separately from all other inbreeding dryocoetine and xyleborine beetles. The neotenic development of these males is the first known example in Coleoptera, and several remarkable morphological modifications demonstrate an ontogenetic transformation series from female to males of different species. We discuss possible scenarios for the evolution of neoteny, precocity and fighting characteristics in these male beetles, in the light of W. D. Hamilton's 'ideal biofacies' of extreme inbreeding. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 353–360.  相似文献   

2.
Haplodiploidy is a highly unusual genetic system that has arisen at least 17 times in animals of varying lifestyles, but most of these haplodiploid lineages remain relatively poorly known. In particular, the ecological and genetic circumstances under which haplodiploidy originates have been difficult to resolve. A recent molecular‐phylogenetic study has resolved the phylogenetic position of the haplodiploid clade of scolytine beetles as the sister group of the genus Dryocoetes. Haplodiploid bark beetles are remarkable in that the entire clade of over 1300 species are apparently extreme (sib‐mating) inbreeders, most of which cultivate fungi for food while some attack phloem, twigs or seeds. Here we present a much more detailed molecular‐phylogenetic study of this clade. Using partial sequences of elongation factor 1‐alpha and the mitochondrial small ribosomal subunit (12S), we reconstructed the phylogeny for 48 taxa within the haplodiploid clade, as well as two species of the diplodiploid sister genus Dryocoetes. Results indicate that the genus Ozopemon is the basal lineage of die haplodiploid clade. Since Ozopemon, Dryocoetes, and other outgroups are phloem‐feeding, this strongly suggest that haplodiploidy and inbreeding evolved in a phloem feeding ancestor. Following the divergence of Ozopemon there is a series of extremely short internodes near the base of the clade, suggesting a very rapid rate of diversification in early Miocene (based on fossil evidence and sequence divergence). Among the many substrates for breeding and food resources utilized within this species‐rich clade, the cultivation of yeast‐like ambrosia fungi in tunnels deep into the wood predominates (nearly 90% of the species). The number of transitions to feeding on such fungi was few, possibly only one, and is perhaps an irreversible transition. The habit of feeding on fungi cultured in xylem makes it possible for the beetles to use a great variety of plant taxa. This extreme resource generalism, in conjunction with the colonization advantage conferred by haplodiploidy and inbreeding, may have promoted the rapid diversification of this clade.  相似文献   

3.
Parasitoid sex ratios are influenced by mating systems, whether complete inbreeding, partial inbreeding, complete inbreeding avoidance, or production of all-male broods by unmated females. Population genetic theory demonstrates that inbreeding is possible in haplodiploids because the purging of deleterious and lethal mutations through haploid males reduces inbreeding depression. However, this purging does not act quickly for deleterious mutations or female-limited traits (e.g., fecundity, host searching, sex ratio). The relationship between sex ratio, inbreeding, and inbreeding depression has not been explored in depth in parasitoids. The gregarious egg parasitoid, Trichogramma pretiosum Riley, collected from Riverside, CA (USA) produced a female-biased sex ratio of 0.24 (proportion of males). Six generations of sibling mating in the laboratory uncovered considerable inbreeding depression (∼ 20%) in fecundity and sex ratio. A population genetic study (based upon allozymes) showed the population was inbred (F it = 0.246), which corresponds to 56.6% sib-mating. However, average relatedness among females emerging from the same host egg was only 0.646, which is less than expected (0.75) if ovipositing females mate randomly. This lower relatedness could arise from inbreeding avoidance, multiple mating by females, or superparasitism. A review of the literature in general shows relatively low inbreeding depression in haplodiploid species, but indicates that inbreeding depression can be as high as that found in Drosophila. Finally, mating systems and inbreeding depression are thought to evolve in concert (in plants), but similar dynamic models of the joint evolution of sex ratio, mating systems, and inbreeding depression have not been developed for parasitoid wasps. Received: November 13, 1998 /Accepted: January 8, 1999  相似文献   

4.
Several new models are proposed for the evolution of haplodiploidy. Each of these models is evaluated for its ability to explain (1) special problems associated with transition to haplodiploidy from a population of diplodiploid progenitors, (2) current patterns of population structure in haplodiploid and related species, and (3) the evolution of genetic systems similar but not identical to haplodiploid systems. Of the new models, three are based on special conditions associated with inbreeding. Close inbreeding provides for the automatic effects of reduced problems in expressing recessives, lowered differences in gain from heterozygosity (to produce both heterotic effects and a greater variety of offspring) between haploid and diploid males, effective protection of haploids from direct competition with diploids, and a mechanism for the spread of haplodiploidy through gains derived from increased ability to control sex ratio. These models differ in the context where gain from sex ratio control is expressed. Pathways for the evolution of haplodiploidy in outbreeding populations are also discussed. Females who parthenogenetically produce haploid males have high genetic relatedness to their sons. If the sperm of these males is used to make both sons and daughters, i.e., through matings with diplodiploid females, there may be a net gain for haplodiploids. Another outbreeding model, modified from S. W. Brown (1964, Genetics49, 797–817), deals with selection for females producing haploid males in populations where there are driving sex chromosomes. Biases created by drive in sex ratio may allow haplodiploid females to be the only effective producers of males in the population. Several of the new models explain the whole range of haplodiploid and related adaptations and provide predictions that appear to be more consistent with the known structure of contemporary populations than those available in current models.  相似文献   

5.
H W Biedermann P 《ZooKeys》2010,(56):253-267
Strongly female-biased sex ratios are typical for the fungalfeeding haplodiploid Xyleborini (Scolytinae, Coleoptera), and are a result of inbreeding and local mate competition (LMC). These ambrosia beetles are hardly ever found outside of trees, and thus male frequency and behavior have not been addressed in any empirical studies to date. In fact, for most species the males remain undescribed. Data on sex ratios and male behavior could, however, provide important insights into the Xyleborini's mating system and the evolution of inbreeding and LMC in general.In this study, I used in vitro rearing methods to obtain the first observational data on sex ratio, male production, male and female dispersal, and mating behavior in a xyleborine ambrosia beetle. Females of Xyleborinus saxesenii Ratzeburg produced between 0 and 3 sons per brood, and the absence of males was relatively independent of the number of daughters to be fertilized and the maternal brood sex ratio. Both conformed to a strict LMC strategy with a relatively precise and constant number of males. If males were present they eclosed just before the first females dispersed, and stayed in the gallery until all female offspring had matured. They constantly wandered through the gallery system, presumably in search of unfertilized females, and attempted to mate with larvae, other males, and females of all ages. Copulations, however, only occurred with immature females. From galleries with males, nearly all females dispersed fertilized. Only a few left the natal gallery without being fertilized, and subsequently went on to produce large and solely male broods. If broods were male-less, dispersing females always failed to found new galleries.  相似文献   

6.
In sexual reproduction the genetic similarity or dissimilarity between mates strongly affects offspring fitness. When mating partners are too closely related, increased homozygosity generally causes inbreeding depression, whereas crossing between too distantly related individuals may disrupt local adaptations or coadaptations within the genome and result in outbreeding depression. The optimal degree of inbreeding or outbreeding depends on population structure. A long history of inbreeding is expected to reduce inbreeding depression due to purging of deleterious alleles, and to promote outbreeding depression because of increased genetic variation between lineages. Ambrosia beetles (Xyleborini) are bark beetles with haplodiploid sex determination, strong local mate competition due to regular sibling mating within the natal chamber, and heavily biased sex ratios. We experimentally mated females of Xylosandrus germanus to brothers and unrelated males and measured offspring fitness. Inbred matings did not produce offspring with reduced fitness in any of the examined life-history traits. In contrast, outcrossed offspring suffered from reduced hatching rates. Reduction in inbreeding depression is usually attributed to purging of deleterious alleles, and the absence of inbreeding depression in X. germanus may represent the highest degree of purging of all examined species so far. Outbreeding depression within the same population has previously only been reported from plants. The causes and consequences of our findings are discussed with respect to mating strategies, sex ratios, and speciation in this unusual system.  相似文献   

7.
Abstract.  1. Extremely female-biased sex ratios are known in the social spider mite species, Stigmaeopsis longus and S. miscanthi . Whether Hamilton's local mate competition (LMC) theory can explain such sex ratios was investigated.
2. Significant changes of the progeny sex ratios in the direction predicted by the LMC model were found in both species when the foundress number changed. Therefore, LMC can partly explain the skewed sex ratios in these species.
3. When the foundress number increased, the progeny sex ratio was still female biased and significantly different from the prediction of the LMC model for haplodiploidy. Relatedness between foundresses could not fully explain the female-biased sex ratios. Therefore, these results suggest that there are factors other than LMC skewing the sex ratios of these species toward female.  相似文献   

8.
Several shifts from ancestral conifer feeding to angiosperm feeding have been implicated in the unparalleled diversification of beetle species. The single largest angiosperm-feeding beetle clade occurs in the weevils, and comprises the family Curculionidae and relatives. Most authorities confidently place the bark beetles (Scolytidae) within this radiation of angiosperm feeders. However, some clues indicate that the association between conifers and some scolytids, particularly in the tribe Tomicini, is a very ancient one. For instance, several fragments of Gondwanaland (South America, New Caledonia, Australia and New Guinea) harbour endemic Tomicini specialized on members of the formerly widespread and abundant conifer family Araucariaceae. As a first step towards resolving this seeming paradox, we present a phylogenetic analysis of the beetle family Scolytidae with particularly intensive sampling of conifer-feeding Tomicini and allies. We sequenced and analysed elongation factor 1alpha and nuclear rDNAs 18S and 28S for 45 taxa, using members of the weevil family Cossoninae as an out-group. Our results indicate that conifer feeding is the ancestral host association of scolytids, and that the most basal lineages of scolytids feed on Aramucaria. If scolytids are indeed nested within a great angiosperm-feeding clade, as many authorities have held, then a reversion to conifer feeding in ancestral scolytids appears to have occurred in the Mesozoic, when Araucaria still formed a major component of the woody flora.  相似文献   

9.
Coccoids (scale insects) exhibit a wide variety of chromosomal systems. In many species, paternal chromosomes are eliminated from the male germline such that all of a male's sperm transmit an identical set of maternal chromosomes. In such species, an offspring's sex is determined by whether or not paternal chromosomes are inactivated in the egg's cytoplasm after fertilization. This paper presents a model of the evolution of paternal genome loss in coccoids from an ancestral system of XX-XO sex determination. The model is based on Hamilton's (1967) theory that different genetic elements within the genome have different unbeatable sex ratios. In this model (1) meiotic drive by the X chromosome in XO males causes female-biased sex ratios; (2) the maternal set of autosomes in males evolves effective sex linkage to exploit X-drive; and (3) genes expressed in mothers are selected to convert some of their XX daughters into sons. A similar model may explain the evolution of haplodiploidy.  相似文献   

10.
对叶榕传粉小蜂性比率的调节和稳定   总被引:5,自引:0,他引:5  
彭艳琼  杨大荣  王秋艳 《生态学报》2005,25(6):1347-1351
传粉榕小蜂呈现偏雌的性比率,单双倍体性别决定系统、局域配偶竞争和近交效应被认为是调节偏雌性比率的3个主要机制。通过研究影响对叶榕传粉小蜂性比率的因素,结果表明传粉榕小蜂的偏雌性比率随局域配偶竞争强度的降低而增加;受母代雌蜂交配次数的影响,随着母代雌蜂交配次数的增加,子代的偏雌性比率逐渐降低,这一结果首次揭示了传粉榕小蜂的交配制次数对性比率的影响,并在个体水平上定量了性比率变异与雌蜂交配频次的关系。传粉小蜂的性比率与共生的非传粉小蜂的关系,非传粉小蜂的介入直接减少了传粉小蜂的数量,甚至对传粉小蜂的种群有显著影响,结果发现非传粉小蜂对传粉小蜂雌雄性的分配比率没有显著影响,传粉榕小蜂仍能正常地进行繁殖。传粉与非传粉者小蜂之间作用关系的确定,可为进一步理解两者的稳定共生的机制提供科学证据。  相似文献   

11.
Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.Subject terms: Evolutionary genetics, Evolutionary ecology, Parasitology  相似文献   

12.
Recent studies have used sex ratios to quantify the mating systems of organisms, the argument behind it being that more female-biased sex ratios are an indication of higher local mate competition, which goes hand-in-hand with higher levels of inbreeding. Although qualitative tests of the effects of mating systems on sex ratios abound, there is a dearth of studies that quantify both the mating system and the sex ratio. I use a colour dimorphism with a simple Mendelian inheritance to quantify the mating system of an unusual fig-pollinating wasp in which males disperse to obtain matings on non-natal mating patches. In qualitative agreement with initial expectations, the sex ratios of single foundresses are found to be higher than those of regular species. However, by quantifying the mating system, it is shown that the initial expectation is incorrect and this species' sex ratio is a poor predictor of its mating system (it underestimates the frequency of sib-mating). The species has a very high variance in sex ratio suggesting that excess males can simply avoid local mate competition (and hence a lowered fitness to their mother) by dispersing to other patches.  相似文献   

13.
The gregarious parasitoid Cotesia glomerata (L.) is often presumed to possess the characteristic attributes of a species that manifests local mate competition (LMC), as it commonly produces female-biased broods. However, our field surveys of sex ratio and laboratory observations of adult behaviour showed that this species is subject to partial local mate competition caused by natal dispersal. On average, 30% of males left their natal patch before mating, with the proportion of dispersing males increasing with an increase in the patch's sex ratio (i.e. proportion of males). Over 50% of females left their natal patch before mating, and only 27.5% of females mated with males emerging from the same natal patch. Although females showed no preference between males that were and were not their siblings, broods from females that mated with siblings had a significantly higher mean brood sex ratio (0.56) than broods from females that mated with nonsiblings (0.39). Furthermore, brood sex ratios increased as inbreeding was intensified over four generations. A field population of this wasp had a mean brood sex ratio of 0.35 over 3 years, which conformed well to the evolutionarily stable strategy sex ratio (r=0.34) predicted by Taylor's partial sibmating model for haplodiploid species. These results suggest that the sex allocation strategy of C. glomerata is based on both partial local mate competition in males and inbreeding avoidance in females. In turn, this mating system plays a role in the evolution of natal dispersal behaviour in this species.Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

14.
This paper and the previous member of the series, deal with genetical mechanisms responsible for the evolution of eusociality (a level of social organization that includes differentiated sterile castes) among the “social” insects. Eusociality has evolved in a number of different species. Two different types of genetic systems are represented among these species: diplodiploidy (both sexes diploid) and haplodiploidy (haploid males and diploid females). The previous paper examined the evolution of a sterile caste system in the context of diplodiploidy, and the present paper considers the evolution of eusociality in the context of haplodiploidy.The present study demonstrates that selection operating with regard to random groups within the haplodiploid inheritance system cannot result in the evolution of a sterile caste system. Thus haplodiploidy, in itself, is not sufficient for the evolution of eusociality. However, if the sterile caste members are related to the reproductive members of the group, the appropriate caste associate gene effects are included in the function determining gene frequency change (i.e. Δpi), and therefore, eusociality can evolve. This is true for both haploid and diploid castes.In comparing the two modes of inheritance, it is demonstrated that haplodiploidy provides up to 37·5% increased selection efficiency relative to diplodiploidy in evolving a social caste system in the absence of inbreeding.  相似文献   

15.
Although male haploidy in haplodiploid species aids purging of deleterious alleles, haplodiploid animals may nevertheless suffer significant negative effects of inbreeding. The effects may even be stronger in social Hymenoptera because the negative fitness consequences may be expressed at two levels: the individual level (inbred queens) and colony level (inbred workers). Surprisingly, in natural populations the impact of inbreeding on fitness has been studied in very few insects, and even fewer haplodiploid ones. Hence there is currently little understanding of the potential effects of inbreeding. One reason may be the difficulties in estimating inbreeding especially at the individual level, apart from the additional problems posed by haplodiploidy. In order to study the impact of inbreeding, its individual level must be estimated as precisely as possible. When the population pedigree is unknown, relatedness-based estimates of the individual inbreeding coefficient can be used to estimate inbreeding. Here we examine the relationship between inbreeding coefficients and relatedness in diploid and haplodiploid organisms, and provide guidelines for estimating inbreeding both at the individual and the colony level. Received 7 March 2005; revised 18 April 2005, accepted 20 April 2005. An erratum to this article is available at .  相似文献   

16.
Stahlhut JK  Cowan DP 《Heredity》2004,92(3):189-196
The Hymenoptera have arrhenotokous haplodiploidy in which males normally develop from unfertilized eggs and are haploid, while females develop from fertilized eggs and are diploid. Multiple sex determination systems are known to underlie haplodiploidy, and the best understood is single-locus complementary sex determination (sl-CSD) in which sex is determined at a single polymorphic locus. Individuals heterozygous at the sex locus develop as females; individuals that are hemizygous (haploid) or homozygous (diploid) at the sex locus develop as males. sl-CSD can be detected with inbreeding experiments that produce diploid males in predictable proportions as well as sex ratio shifts due to diploid male production. This sex determination system is considered incompatible with inbreeding because the ensuing increase in homozygosity increases the production of diploid males that are inviable or infertile, imposing a high cost on matings between close relatives. However, in the solitary hunting wasp Euodynerus foraminatus, a species suspected of having sl-CSD, inbreeding may be common due to a high incidence of sibling matings at natal nests. In laboratory crosses with E. foraminatus, we find that sex ratios and diploid male production (detected as microsatellite heterozygosity) are consistent with sl-CSD, but not with other sex determination systems. This is the first documented example of sl-CSD in a hymenopteran with an apparent natural history of inbreeding, and thus presents a paradox for our understanding of hymenopteran genetics.  相似文献   

17.
Haplodiploid species display extraordinary sex ratios. However, a differential investment in male and female offspring might also be achieved by a differential provisioning of eggs, as observed in birds and lizards. We investigated this hypothesis in the haplodiploid spider mite Tetranychus urticae, which displays highly female-biased sex ratios. We show that egg size significantly determines not only larval size, juvenile survival and adult size, but also fertilization probability, as in marine invertebrates with external fertilization, so that female (fertilized) eggs are significantly larger than male (unfertilized) eggs. Moreover, females with on average larger eggs before fertilization produce a more female-biased sex ratio afterwards. Egg size thus mediates sex-specific egg provisioning, sex and offspring sex ratio. Finally, sex-specific egg provisioning has another major consequence: male eggs produced by mated mothers are smaller than male eggs produced by virgins, and this size difference persists in adults. Virgin females might thus have a (male) fitness advantage over mated females.  相似文献   

18.
Abstract. It has long been assumed that inbreeding depression in haplodiploid organisms is low due to their ability to purge genetic load in haploid males. It has been suggested that this low genetic load could facilitate the evolution of inbreeding behaviors driven by local mate competition in hymenopteran parasitoids. I have examined inbreeding depression in haplodiploids in two ways. First I show that an outbreeding haplodiploid wasp Uscana semifumipennis (Hymenoptera: Trichogrammatidae) suffers substantial inbreeding depression. Longevity was 38% shorter, fecundity was 32% lower, and sex ratio was 5% more male for experimentally inbred wasps when compared to outbred controls. There were interactions between size and both fecundity and sex ratio for inbred wasps that were not seen for outbred individuals. Second, an analysis of data from the literature suggests that when inbreeding is experimentally imposed on populations, haplodiploid insects and mites as a group do suffer less from inbreeding depression than diploid insects, although substantial inbreeding depression in haplodiploid taxa does exist. The meta-analysis revealed no difference in inbreeding depression between gregarious haplodiploid wasps, which are likely to have a history of inbreeding, and solitary haplodiploid species, which are assumed to be primarily outbred.  相似文献   

19.
Abstract.  It has been suggested that sex ratio distorting symbionts are involved in the sex determination and female-biased sex ratios observed in strongly inbred scolytid beetles. Coccotrypes dactyliperda (Coleoptera: Scolytinae) is a species in which mother-son- and sib-mating occur inside the date seeds it inhabits, and the sex ratios produced are highly skewed toward females. In the present study, polymerase chain reaction (PCR) techniques and antibiotic treatments are applied to determine the possible role of Bacteria in this system. PCR with primers specifically designed to target the 16S rDNA gene in all Bacteria reveals the presence of Wolbachia and Rickettsia in control beetles, but not in antibiotic-treated individuals. Virgin females fed with antibiotics lay no eggs, and no sign of oogenesis is detected compared with all-male progeny of virgin control females. Mated females fed with antibiotics lay significantly fewer eggs than control females, with a strong effect of female age at the time of antibiotic feeding on the number of eggs laid. The study suggests that symbiotic bacteria are not involved in female-biased sex ratios but are required for oogenesis in C. dactyliperda . The specific role each of the bacteria ( Wolbachia and Rickettsia ) plays in the oogenesis remains to be determined.  相似文献   

20.
Summary We tested predictions of sex allocation theory with a series of field experiments on sex allocation in an herbivorous, haplodiploid, sawfly, Euura lasiolepis. Our experiments demonstrated the following points. 1) Adult females allocated progeny sex in response to plant growth. 2) Population sex ratios varied in response to plant quality, being male-biased where plant growth was slow and female-biased where plant growth was rapid. 3) Family sex ratios varied in response to plant quality, being male-biased on slow-growing plants and female-biased on rapidly-growing plants. 4) Female fitness increased more rapidly as the result of developing on more rapidly-growing plants than male mass. We conclude from these results that there are unequal returns on investment in male and female progeny. This results in facultatively biased sawfly sex ratios as an adaptive response to variation in plant quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号