首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Photosynthetic microbial mats are remarkably complete self-sustaining ecosystems at the millimeter scale, yet they have substantially affected environmental processes on a planetary scale. These mats may be direct descendents of the most ancient biological communities in which even oxygenic photosynthesis might have developed. Photosynthetic mats are excellent natural laboratories to help us to learn how microbial populations associate to control dynamic biogeochemical gradients.  相似文献   

3.
Cyanobacterial mats developing in oil-contaminated sabkhas along the African coasts of the Gulf of Suez and in the pristine Solar Lake, Sinai, were collected for laboratory studies. Samples of both mats showed efficient degradation of crude oil in the light, followed by development of an intense bloom of Phormidium spp. and Oscillatoria spp. Isolated cyanobacterial strains, however, did not degrade crude oil in axenic cultures. Strains of sulfate-reducing bacteria and aerobic heterotrophs were capable of degrading model compounds of aliphatic and aromatic hydrocarbons. Results indicate that degradation of oil was done primarily by aerobic heterotrophic bacteria. The oxygenic photosynthesis of oil-insensitive cyanobacteria supplied the molecular oxygen for the efficient aerobic metabolism of organisms, such as Marinobacter sp. The diurnal shifts in environmental conditions at the mat surface, from highly oxic conditions in the light to anaerobic sulfide-rich habitat in the dark, may allow the combined aerobic and anaerobic degradation of crude oil at the mat surface. Hence, coastal cyanobacterial mats may be used for the degradation of coastline oil spills. Oxygen microelectrodes detected a significant inhibition of photosynthetic activity subsequent to oil addition. This prevailed for a few hours and then rapidly recovered. In addition, shifts in bacterial community structure following exposure to oil were determined by denaturing gradient gel electrophoresis of PCR-amplified fractions of 16S rRNA from eubacteria, cyanobacteria and sulfate-reducing bacteria. Since the mats used for the present study were obtained from oil-contaminated environments, they were believed to be preequilibrated for petroleum remediation. The mesocosm system at Eilat provided a unique opportunity to study petroleum degradation by mats formed under different salinities (up to 21%). These mats, dominated by cyanobacteria, can serve as close analogues to the sabkhas contaminated during the Gulf War in Kuwait and Saudi Arabia. Electronic Publication  相似文献   

4.
Based on combined microsensor measurements of irradiance, temperature and O(2) , we compared light energy budgets in photosynthetic microbial mats, with a special focus on the efficiency of light energy conservation by photosynthesis. The euphotic zones in the three studied mats differed in their phototrophic community structure, pigment concentrations and thickness. In all mats, < 1% of the absorbed light energy was conserved via photosynthesis at high incident irradiance, while the rest was dissipated as heat. Under light-limiting conditions, the photosynthetic efficiency reached a maximum, which varied among the studied mats between 4.5% and 16.2% and was significantly lower than the theoretical maximum of 27.7%. The maximum efficiency correlated linearly with the light attenuation coefficient and photopigment concentration in the euphotic zone. Higher photosynthetic efficiency was found in mats with a thinner and more densely populated euphotic zone. Microbial mats exhibit a lower photosynthetic efficiency compared with ecosystems with a more open canopy-like organization of photosynthetic elements, where light propagation is not hindered to the same extent by photosynthetically inactive components; such components contributed about 40-80% to light absorption in the investigated microbial mats, which is in a similar range as in oceanic planktonic systems.  相似文献   

5.
The prokaryotic diversity and respiratory activity of microbial mat communities on the Markham Ice Shelf and Ward Hunt Ice Shelf in the Canadian high Arctic were analysed. All heterotrophic isolates and > 95% of bacterial 16S rRNA gene clone library sequences from both ice shelves grouped within the phyla Bacteroidetes , Proteobacteria and Actinobacteria . Clone library analyses showed that the bacterial communities were diverse and varied significantly between the two ice shelves, with the Markham library having a higher estimated diversity (Chao1 = 243; 105 operational taxonomic units observed in 189 clones) than the Ward Hunt library (Chao1 = 106; 52 operational taxonomic units observed in 128 clones). Archaeal 16S rRNA gene clone libraries from both ice shelves were dominated by a single Euryarchaeota sequence, which appears to represent a novel phylotype. Analyses of community activity by radiorespiration assays detected metabolism in mat samples from both ice shelves at temperatures as low as −10°C. These findings provide the first insight into the prokaryotic biodiversity of Arctic ice shelf communities and underscore the importance of these cryo-ecosystems as a rich source of microbiota that are adapted to extreme cold.  相似文献   

6.
The diazotrophic community in microbial mats growing along the shore of the North Sea barrier island Schiermonnikoog (The Netherlands) was studied using microscopy, lipid biomarkers, stable carbon (δ(13) C(TOC) ) and nitrogen (δ(15) N) isotopes as well as by constructing and analyzing 16S rRNA gene libraries. Depending on their position on the littoral gradient, two types of mats were identified, which showed distinct differences regarding the structure, development and composition of the microbial community. Intertidal microbial mats showed a low species diversity with filamentous non-heterocystous Cyanobacteria providing the main mat structure. In contrast, supratidal microbial mats showed a distinct vertical zonation and a high degree of species diversity. Morphotypes of non-heterocystous Cyanobacteria were recognized as the main structural component in these mats. In addition, unicellular Cyanobacteria were frequently observed, whereas filamentous heterocystous Cyanobacteria occurred only in low numbers. Besides the apparent visual dominance of cyanobacterial morphotpyes, 16S rRNA gene libraries indicated that both microbial mat types also included members of the Proteobacteria and the Cytophaga-Flavobacterium-Bacteroides group as well as diatoms. Bulk δ(15) N isotopes of the microbial mats ranged from +6.1‰ in the lower intertidal to -1.2‰ in the supratidal zone, indicating a shift from predominantly nitrate utilization to nitrogen fixation along the littoral gradient. This conclusion was supported by the presence of heterocyst glycolipids, representing lipid biomarkers for nitrogen-fixing heterocystous Cyanobacteria, in supratidal but not in intertidal microbial mats. The availability of combined nitrogen species might thus be a key factor in controlling and regulating the distribution of the diazotrophic microbial community of Schiermonnikoog.  相似文献   

7.
Summary This paper summarizes studies of sedimentary surface structures in which microbial mats play a role. Intertidal/supratidal transitions of tidal flats of the North Sea coast, and shallow hypersaline water bodies of salterns (Bretagne, Canary and Balearic Islands), and Gavish Sabkha (Sinai) reveal a multitude of sedimentary surface structures which can be grouped and primary biologically controlled structures. Physically controlled surface structures include shrinkage cracks, erosion marks, deformation structures caused by water friction, gas pressure and mineral encrustation. Shrinkage cracks in microbial mats reveal the following features: (i) horizontally arranged cauliflower pattern that differs from the usually orthogonally regular crack morphology in clay, (ii) rounded edges and pillow-like thickening along the crack edges, caused by the growth of mats into the cracks. Criteria of erosion are pocket-like depressions and ripple marks on the thus exposed non-stabilized sand, and residual stacks of microbial mats. Deformation structures are due to water friction causing flotation of loosely attached microbial mats which fold and tear. Gas migration from deeper layers causes domal upheaval, protuberance structures, folds and “fairy rings”. Protuberance structures are caused by the rupture of gas domes and rapid escape of the enclosed gas. The sudden drop of pressure forces sediment to well up from below through the gas channels and to fill the internal hollow spaces of the domes. “Fairy rings” are horizontal ringshaped structures. Their center is the exit point of gas bubbles which escape from the substrate into the shallow water. The bubbles generate concentric waves which cause displacement of fine muddy sediments at the sediment-water interface Such gradual displacement guides mat-constructing microbes to grow concentrically. The “fairy rings” are crowned by pinnacle structures of bacterial and diatom origin. Pinnacles, “fairy rings” and pillow-like coatings of crack margins are biogenic structures which have to be genetically separated from purely physically controlled structures.  相似文献   

8.
Chocolate Pots Hot Springs in Yellowstone National Park are high in ferrous iron, silica and bicarbonate. The springs are contributing to the active development of an iron formation. The microstructure of photosynthetic microbial mats in these springs was studied with conventional optical microscopy, confocal laser scanning microscopy and transmission electron microscopy. The dominant mats at the highest temperatures (48-54 degrees C) were composed of Synechococcus and Chloroflexus or Pseudanabaena and Mastigocladus. At lower temperatures (36-45 degrees C), a narrow Oscillatoria dominated olive green cyanobacterial mats covering most of the iron deposit. Vertically oriented cyanobacterial filaments were abundant in the top 0.5 mm of the mats. Mineral deposits accumulated beneath this surface layer. The filamentous microstructure and gliding motility may contribute to binding the iron minerals. These activities and heavy mineral encrustation of cyanobacteria may contribute to the growth of the iron deposit. Chocolate Pots Hot Springs provide a model for studying the potential role of photosynthetic prokaryotes in the origin of Precambrian iron formations.  相似文献   

9.
10.
Biological evolution has resulted in a richness and diversity of species. Among microorganisms this is most evident in the wealth and diversity of biochemical transformations. Evidence for evolutionary relationships may be obtained from comparative studies, but with microorganisms it is also possible to follow evolution in action. Microbial populations adapt rapidly to changes in the environment and the evolution of new metabolic activities can be observed in laboratory experiments. The enzymes of many catabolic pathways are synthesized in response to the presence of inducing substrates. New catabolic activities may be acquired by mutations in regulatory genes resulting in alterations in the specificity of induction, or in enzyme synthesis in the absence of inducer. Mutations in structural genes may given rise to enzymes with altered substrate specificities. In bacteria, catabolic genes may be carried on plasmids and the exchange of plasmids among bacterial populations increases the evolutionary potential. Experiments in microbial evolution have produced strains with novel catabolic activities involving regulatory or structural gene mutations, gene duplications and plasmid exchange. Enzymes studied in this way include amidase, ribitol dehydrogenase, evolved beta-galactosidase, and enzymes of the catabolic pathways for pentoses and pentitols and haloaromatic compounds.  相似文献   

11.
A nodule-shaped microbial mat was found subsurface in sediments of a gas seep in the anoxic Black Sea. This mat was dominated by ANME-1 archaea and consumed methane and sulfate simultaneously. We propose that such subsurface mats represent the initial stage of previously investigated microbial reefs.  相似文献   

12.
[This corrects the article on p. 531 in vol. 41.].  相似文献   

13.
Successful and accurate analysis and interpretation of metagenomic data is dependent upon the efficient extraction of high-quality, high molecular weight (HMW) community DNA. However, environmental mat samples often pose difficulties to obtaining large concentrations of high-quality, HMW DNA. Hypersaline microbial mats contain high amounts of extracellular polymeric substances (EPS)1 and salts that may inhibit downstream applications of extracted DNA. Direct and harsh methods are often used in DNA extraction from refractory samples. These methods are typically used because the EPS in mats, an adhesive matrix, binds DNA during direct lysis. As a result of harsher extraction methods, DNA becomes fragmented into small sizes. The DNA thus becomes inappropriate for large-insert vector cloning. In order to circumvent these limitations, we report an improved methodology to extract HMW DNA of good quality and quantity from hypersaline microbial mats. We employed an indirect method involving the separation of microbial cells from the background mat matrix through blending and differential centrifugation. A combination of mechanical and chemical procedures was used to extract and purify DNA from the extracted microbial cells. Our protocol yields approximately 2 μg of HMW DNA (35-50 kb) per gram of mat sample, with an A(260/280) ratio of 1.6. Furthermore, amplification of 16S rRNA genes suggests that the protocol is able to minimize or eliminate any inhibitory effects of contaminants. Our results provide an appropriate methodology for the extraction of HMW DNA from microbial mats for functional metagenomic studies and may be applicable to other environmental samples from which DNA extraction is challenging.  相似文献   

14.
Microbial mats have descended from perhaps the oldest and most widespread biological communities known. Mats harbor microbes that are crucial for studies of bacterial phylogeny and physiology. They illustrate how several oxygen-sensitive biochemical processes have adapted to oxygen, and they show how life adapted to dry land long before the rise of plants. The search for the earliest grazing protists and metazoa in stromatolites is aided by observations of mats: in them, organic compounds characteristic of ancient photosynthetic protists can be identified. Recent mat studies suggest that the 13C/12C increase observed over geological time in stromatolitic organic matter was driven at least in part by a long-term decline in atmospheric carbon dioxide levels.  相似文献   

15.
Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulphate concentrations ([]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm palaeoclimates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulphate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [] (c. 70 mm ) and ‘Archean’[] (<0.2 mm ). At low [], primary production in the mats was essentially unaffected, while rates of sulphate reduction decreased by a factor of three, and methane fluxes increased by up to 10‐fold. However, remineralization by methanogenesis still amounted to less than 0.4% of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats were probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low environmental levels oxygen and sulphate.  相似文献   

16.
17.
18.
During recent oceanographic cruises to Pacific hydrothermal vent sites (9 degrees N and the Guaymas Basin), the rapid microbial formation of filamentous sulfur mats by a new chemoautotrophic, hydrogen sulfide-oxidizing bacterium was documented in both in situ and shipboard experiments. Observations suggest that formation of these sulfur mats may be a factor in the initial colonization of hydrothermal surfaces by macrofaunal Alvinella worms. This novel metabolic capability, previously shown to be carried out by a coastal strain in H2S continuous-flow reactors, may be an important, heretofore unconsidered, source of microbial organic matter production at deep-sea hydrothermal vents.  相似文献   

19.
Microbial mat ecosystems are characterized by both seasonal and diel fluctuations in several physicochemical variables, so that resident microorganisms must frequently adapt to the changing conditions of their environment. It has been pointed out that, under stress conditions, bacterial cells with higher contents of poly-hydroxyalkanoates (PHA) survive longer than those with lower PHA content. In the present study, PHA-producing strains from Ebro Delta microbial mats were selected using the Nile red dying technique and the relative accumulation of PHA was monitored during further laboratory cultivation. The number of heterotrophic isolates in trypticase soy agar (TSA) was ca. 107 colony-forming units/g microbial mat. Of these, 100 randomly chosen colonies were replicated on mineral salt agar limited in nitrogen, and Nile red was added to the medium to detect PHA. Orange fluorescence, produced upon binding of the dye to polymer granules in the cell, was detected in approximately 10% of the replicated heterotrophic isolates. The kinetics of PHA accumulation in Pseudomonas putida, and P. oleovorans were compared with those of several of the environmental isolates spectrofluorometry. PHA accumulation, measured as relative fluorescence intensity, resulted in a steady-state concentration after 48 h of incubation in all strains assayed. At 72 h, the maximum fluorescence intensity of each strain incubated with glucose and fructose was usually similar. MAT-28 strain accumulated more PHA than the other isolates. The results show that data obtained from environmental isolates can highly improve studies based on modeling-simulation programs, and that microbial mats constitute an excellent source for the isolation of PHA-producing strains with industrial applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号