首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To understand how patchiness influences population dynamics of a tri-trophic interaction, a tractable model is formulated in terms of differential equations. Motivated by the structure of systems such as plants, phytophagous mites and predatory mites, the model takes dispersal into account at the middle trophic level. The effect of dispersal for the middle level in a tri-trophic system could be either stabilising or destabilising since the middle level acts both as prey and as predator. First a simple model with logistic growth for the lowest level is formulated. A model with logistic growth for the lowest level and instantaneous dispersal has a globally stable three-species equilibrium, if this equilibrium exists. Addition of a middle level dispersal phase of non-negligible duration influences equilibrium stability. In the absence of the top trophic level a limit cycle can occur, caused by the delay that exists in the reaction of the middle level to the changes in the lowest level. With low predator efficiency, it is also possible to have an unstable three-species equilibrium. So addition of a middle level dispersal phase of non-negligible duration can work destabilising. Next the persistence of the third trophic level is studied. Even when the three-species equilibrium exists, the third trophic level need not be persistent. A two-species limit cycle can keep its stability when a three-species equilibrium exists; the system is then bistable. It is argued that such a bistability can offer an alternative explanation for pesticide-induced outbreaks of spider mites and failure of predator introduction.  相似文献   

2.
3.
According to metapopulation theory, the capacity of a habitat patch network to support the persistence of a species is measured by the metapopulation capacity of the patch network. Mathematically, metapopulation capacity is given by the leading eigenvalue lambda(M) of an appropriately constructed non-negative n x n matrix M, where n is the number of habitat patches. Both habitat destruction (in the sense of destruction of entire patches) and habitat deterioration (in the sense of partial destruction of patches) lower the metapopulation capacity of the patch network. The effect of gradual habitat deterioration is given by the derivative of lambda(M) with respect to patch attributes and may be straightforwardly evaluated by sensitivity analysis. In contrast, destruction of entire patches leads to a rank modification of matrix M, the effect of which on lambda(M) may be derived from eigenvector-eigenvalue relations. Eigenvector-eigenvalue relations have previously been analyzed only for symmetric matrices, which restricts their use in biological applications. In this paper I generalize some of the previous results by deriving eigenvector-eigenvalue relations for general non-symmetric matrices. In addition to the exact eigenvector-eigenvalue relations, I also derive eigenvalue perturbation formulae for rank-one modifications. These results lead to simple and intuitive approximation formulae, which may be used e.g. to assess the contribution of particular habitat patches to the metapopulation capacity of the landscape. The mathematical results presented are not restricted to the metapopulation context, but they should find a number of useful applications in biology, engineering and other applied sciences, where the removal (or addition) of matrix rows and columns often corresponds in a natural manner to decreasing (or increasing) the degrees of freedom of the focal system.  相似文献   

4.
Asymmetric dispersal is a common trait among populations, often attributed to heterogeneity and stochasticity in both environment and demography. The cumulative effects of population dispersal in space and time have been described with some success by Van Kirk and Lewis’s average dispersal success approximation (Bull Math Biol 59(1): 107–137 1997), but this approximation has been demonstrated to perform poorly when applied to asymmetric dispersal. Here we provide a comparison of different characterizations of dispersal success and demonstrate how to capture the effects of asymmetric dispersal. We apply these different methods to a variety of integrodifference equation population models with asymmetric dispersal, and examine the methods’ effectiveness in approximating key ecological traits of the models, such as the critical patch size and the critical speed of climate change for population persistence.  相似文献   

5.
Karin Enfjäll  Olof Leimar 《Oikos》2009,118(2):291-299
The evolution of mobility patterns and dispersal strategies depend on different population, habitat and life history characteristics. The ability to perceive and make use of information about the surrounding environment for dispersal decisions will also differ between organisms. To investigate the evolutionary consequences of such differences, we have used a simulation model with nearest-neighbour dispersal in a metapopulation to study how variation in the ability to obtain and make use of information about habitat quality and conspecific density affects the evolution of dispersal strategies. We found a rather strong influence of variation in information on the overall rate of dispersal in a metapopulation. The highest emigration rate evolved in organisms with no information about either density or habitat quality and the lowest rate was found in organisms with information about both the natal and the neighbouring patches. For organisms that can make use of information about conspecific density, positively density-dependent dispersal evolved in the majority of cases, with the strongest density dependence occurring when an individual only has information about density in the natal patch. However, we also identified situations, involving strong local population fluctuations and frequent local extinctions, where negatively density-dependent dispersal evolved.  相似文献   

6.
Conditional dispersal, in which an individual’s decision over whether to disperse is a response to environmental conditions, features prominently in studies of dispersal evolution. Using models of clines, I examine how one widely discussed cost of dispersal, namely, that dispersal impedes local adaptation, changes with conditional dispersal and what this implies for dispersal evolution. I examine the consequences for dispersal evolution of the responsiveness of dispersal to the environment, the accuracy of any proximal cues that individuals rely upon to assess habitat quality, and whether dispersal responds to fitness itself or only to some fitness components (juvenile survivorship). All of the conditional dispersal behaviors that I consider weaken the indirect cost of dispersal inhibiting local adaptation. However, if individuals rely on imprecise cues to assess habitat quality and base dispersal decisions on juvenile survivorship, then conditional dispersal can incur additional costs by exacerbating overcrowding. Conditional dispersal initially leads to steeper clines in traits under direct selection, but when dispersiveness can itself evolve, conditional dispersal allows sigmoidal clines to persist long after those obtained with unconditional movement would become stepped. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The Madeiran archipelago consists of Madeira itself, Porto Santo and the Deserta islands. On Madeira, the forest arid the coastal floral associations are so different that their faunas are effectively isolated and have undergone largely independent development. There are different faunal associations on the eastern peninsula and in the SE coastal region, which may have been separated from each other in the past. On Porto Santo, western and eastern hills have different faunas. Most observations on the fauna are compatible with evolution by allopatric speciation, consequent upon isolation on different islands or mountains, as opposed to parapatric or sympatric processes following disruptive selection. Some cases where the taxonomy is difficult to unravel may, however, indicate parapatric speciation; examples belong to the genera Discula and Heterostoma (Helicidae) and Amphorella (Ferussaciidae). Most evidence relating to species composition in communities is compatible with a balance of random immigration and extinction, rather than selective interaction, allowing clusters of similar sympatric species to accumulate. However, this impression may indicate that test procedures are insufficiently sensitive to detect interactions, and detailed ecological studies are required. Questions about speciation and distribution would be clarified if dates of divergence were established.  相似文献   

8.
Coiffard, C. & Gomez, B. 2009: The rise to dominance of the angiosperm kingdom: dispersal, habitat widening and evolution during the Late Cretaceous of Europe. Lethaia, Vol. 43, pp. 164–169. The earliest fossil records of angiosperms in Europe occur in the Barremian and consist of freshwater wetland plants. From the Barremian onwards, angiosperms show a stepwise widening of their ecological range with the result that they inhabited most environments by the Cenomanian. Nevertheless, most angiosperms had still restricted habitats, while a few angiosperm trees were confined to disturbed environments, such as channel margins. A Wagner’s Parsimony Method analysis performed on a fossil plant and locality database from the Turonian to the Campanian of Europe indicates continued decrease in richness of ferns and gymnosperms compared with angiosperms, turnover between conifer and palm trees in freshwater‐related swamps at about the Cenomanian/Turonian boundary, and spreading of angiosperm trees through the floodplains. The ecological range of angiosperm trees was increased, being recorded in channel margins from the Cenomanian and spreading over floodplains (e.g. Platanaceae) and swamps (e.g. Arecaceae) by the Campanian. These new ecological ranges and successions went with innovative architectures, such as dicot trees and palm trees. Most living core angiosperm families had their earliest representatives in the Late Cretaceous, which should be considered as the dawn of modern angiosperm forests. □Core angiosperms, Europe, Late Cretaceous, palms, Wagner’s Parsimony Method.  相似文献   

9.
10.
Some species cope with, and survive in, urban areas better than others.From a conservation viewpoint it is important to understand why some species arerare or are excluded in the urban landscape, in order that we might take actionto conserve and restore species. Two ecological factors that might explain thedistribution and abundance of butterfly species in the urban landscape aredispersal ability and the availability of suitable habitat. The influence ofthese factors was assessed by examining the distribution and genetic structureof four grassland butterfly species in the West Midlands conurbation, UK. Thefour species differ in their distribution and abundance, mobility and habitatspecificity. No significant fit to the isolation-by-distance model was found forany of the study species at this spatial scale. MeanF ST values revealed a non-significant level ofpopulation structuring for two species, Pieris napi (L.)and Maniola jurtina (L.), but moderate and significantpopulation differentiation for Pyronia tithonus (L.) andCoenonympha pamphilus (L.). Results suggest that thesespecies are limited more by the availability of suitable habitat than by theirability to move among habitat patches. Conservation strategies for thesegrassland species should initially focus on the creation and appropriatemanagement of suitable habitat. More sedentary species that have already beenexcluded from the conurbation may require a more complex strategy for theirsuccessful restoration.  相似文献   

11.
Lars Gutow 《Hydrobiologia》2003,503(1-3):45-48
Idotea metallica establishes self-sustaining populations exclusively on objects drifting at the sea surface. Large-scale transport of drift material with surface currents results in an efficient dispersal of the species. Two types of drifting objects are utilised (biotic and abiotic), providing quite different conditions of life. Ephemeral biotic substrata (mainly uprooted macroalgae) may be used for transport and food, however, resulting habitat destruction from feeding must be a major threat for local population persistence of I. metallica. Abiotic substrata or wood represent efficient vectors for long-distance dispersal due to their resistance to biodegradation, but do not provide food for this herbivorous species. In laboratory experiments, the spatially-limited conditions of drifting substrata were simulated in microcosms. Idotea metallica established persistent populations on both types of substrata. On abiotic substrata, however, where the animals were fed only on Artemia larvae, high variations in density and a reduced intrinsic rate of population growth increased the risk of population extinction. Idotea metallica avoids habitat destruction by limited feeding on macroalgae. In contrast, the coastally distributed congener Idotea baltica destroyed algal habitats by feeding about 10 times faster than I. metallica.  相似文献   

12.
1.  Dispersal of individuals between habitat patches depends on both the propensity to emigrate from a patch and the ability to survive inter-patch movement. Environmental factors and individual characteristics have been shown to influence dispersal rates but separating the effects of emigration and dispersal mortality on dispersal can often be difficult. In this study, we use a soil mite laboratory system to investigate factors affecting emigration and dispersal mortality.
2.  We tested the movement of different age groups in two-patch systems with different inter-patch distances. Differences in immigration among age groups were primarily driven by differences in emigration but dispersal mortality was greater for some groups. Immigration declined with increasing inter-patch distance, which was due to increasing dispersal mortality and decreasing emigration.
3.  In a second experiment, we compared the dispersal of recently matured males and females and tested the impact of food availability during the developmental period on their dispersal. Dispersal was found to be male biased but there was no significant sex bias in dispersal mortality. There was some evidence that food availability could affect emigration and dispersal mortality.
4.  These results demonstrate that both emigration and dispersal mortality can be affected by factors such as individual age and resource availability. Understanding these effects is likely to be important for predicting the fitness costs and population consequences of dispersal.  相似文献   

13.
A non-local model for dispersal with continuous time and space is carefully justified and discussed. The necessary mathematical background is developed and we point out some interesting and challenging problems. While the basic model is not new, a spread parameter (effectively the width of the dispersal kernel) has been introduced along with a conventional rate paramter, and we compare their competitive advantages and disadvantages in a spatially heterogeneous environment. We show that, as in the case of reaction-diffusion models, for fixed spread slower rates of diffusion are always optimal. However, fixing the dispersal rate and varying the spread while assuming a constant cost of dispersal leads to more complicated results. For example, in a fairly general setting given two phenotypes with different, but small spread, the smaller spread is selected while in the case of large spread the larger spread is selected. S. Martinez was partially supported by Fondecyt 1020126 and Fondecyt Lineas Complementarias 8000010. K. Mischaikow was supported in part by NSF Grant DMS 0107396. Key words or phases:Non-local dispersal – Integral kernel – Evolution of dispersal  相似文献   

14.
Carnivores are often particularly sensitive to landscape fragmentation. Ecological corridors may help to connect local populations, ensuring gene flow and retaining viable meta-populations. We aimed to establish habitat suitability models for two large carnivores in Poland, the grey wolf Canis lupus Linnaeus, 1758 and the Eurasian lynx Lynx lynx Linnaeus, 1758, based on ecological niche factor analysis (ENFA). Secondly, we calculated least cost paths (LCPs) based on cost values obtained from ENFA. Thirdly, we determined structures that might act as barriers, thus diminishing the value of the corridor unless appropriate conservation measures are taken. We compared some of the results with actual dispersal data of four lynx in eastern Poland. Results indicate that both species are highly marginalised. Less habitat that is currently available in Poland is suitable for lynx than for wolves. We determined a total of 76 LCPs. Comparison of these theoretical corridors with actual dispersal routes suggests that the traits of calculated LCPs are mostly within the range of those of real routes. We highlight a variety of features that might act as barriers, such as major roads (including planned highways), urbanized areas, and large un-forested areas. We give suggestions where concerted conservation efforts (eg wildlife passages) might be particularly well-directed.  相似文献   

15.
Several factors contribute to the extinction of populations in fragmented habitat but key ones include habitat loss and disruptions to connectivity. Aspects of the ecology of greater gliders (Petauroides volans), along with observations of their response to native forest clearance at a site in southeastern Australia, lead to the prediction in the 1960s that the species would not persist in the replacement exotic pine plantation. However, 35 years later, the species was observed in many remnant native vegetation patches retained within the plantation boundary, albeit at a lower occupancy rate than at matched continuous forest control sites. To determine the role of patch connectivity in persistence of P. volans in remnants, we employed 12 microsatellite markers to genotype individuals from 11 remnants, three contemporary nearby continuous native eucalypt forest sites and a sample collected during native vegetation clearance at the site in the 1960s. Patch samples retained substantially more genetic diversity than expected under an isolation model, suggesting that patches have experienced some immigration. Five putative patch immigrants--two from sampled sites 1- and 7-km distant, and three from unresolved or unsampled localities--were identified via genetic parentage and population assignment analyses. Patch populations displayed varying levels of admixture in Bayesian genetic structure analyses, with the oldest and most geographically isolated ones showing the least admixture, suggesting they have experienced relatively little immigration. Evidence of at least some immigration into patches may explain why P. volans has persisted contrary to expectation in heavily fragmented habitat.  相似文献   

16.
Bird habitat conservation may require different management strategies for different seasonal bird assemblages. We studied habitat use by winter birds in forest and scrubland habitat patches in the northern Negev, Israel. Our goal was to assess whether differences in responses to landscape and habitat structure between breeding and non-breeding seasons require changes in future conservation plans that have been suggested for the Negev breeding bird community. We evaluated habitat and area effects on bird abundance and distribution and tested whether species habitat use during winter involves niche shifts. Compared with breeding birds, a larger proportion of winter bird species occupied both scrubland and forest. As in summer, forest bird species responded to habitat structure, whereas scrubland species were associated with both habitat structure and area. Resident birds disperse into habitats in which they were not present during summer. Consequently, for several species, the correlation between bird densities and environmental factors showed a better fit at the landscape rather than at the habitat scale. In addition, rather than niche shift, birds actually extended their niche breadth. Nest site selection may constrain bird distribution into a realized niche, smaller than their fundamental niche. Despite the scale differences in habitat use, the similar species diversity patterns between seasons suggest that both winter and summer birds would benefit from conservation of scrub patches larger than 50 ha, and enrichment of foliage layers within the planted forests.  相似文献   

17.
Habitat persistence should influence dispersal ability, selecting for stronger dispersal in habitats of lower temporal stability. As standing (lentic) freshwater habitats are on average less persistent over time than running (lotic) habitats, lentic species should show higher dispersal abilities than lotic species. Assuming that climate is an important determinant of species distributions, we hypothesize that lentic species should have distributions that are closer to equilibrium with current climate, and should more rapidly track climatic changes. We tested these hypotheses using datasets from 1988 and 2006 containing all European dragon- and damselfly species. Bioclimatic envelope models showed that lentic species were closer to climatic equilibrium than lotic species. Furthermore, the models over-predicted lotic species ranges more strongly than lentic species ranges, indicating that lentic species track climatic changes more rapidly than lotic species. These results are consistent with the proposed hypothesis that habitat persistence affects the evolution of dispersal.  相似文献   

18.
In his famous haplodiploidy hypothesis, W. D. Hamilton proposed that high sister-sister relatedness facilitates the evolution of kin-selected reproductive altruism among Hymenopteran females. Subsequent analyses, however, suggested that haplodiploidy cannot promote altruism unless altruists capitalize on relatedness asymmetries by helping to raise offspring whose sex ratio is more female-biased than the population at large. Here, we show that haplodiploidy is in fact more favourable than is diploidy to the evolution of reproductive altruism on the part of females, provided only that dispersal is male-biased (no sex-ratio bias or active kin discrimination is required). The effect is strong, and applies to the evolution both of sterile female helpers and of helping among breeding females. Moreover, a review of existing data suggests that female philopatry and non-local mating are widespread among nest-building Hymenoptera. We thus conclude that Hamilton was correct in his claim that 'family relationships in the Hymenoptera are potentially very favourable to the evolution of reproductive altruism'.  相似文献   

19.
Despite a large body of empirical evidence suggesting that the dispersal rates of many species depend on population density, most metapopulation models assume a density-independent rate of dispersal. Similarly, studies investigating the evolution of dispersal have concentrated almost exclusively on density-independent rates of dispersal. We develop a model that allows density-dependent dispersal strategies to evolve. Our results demonstrate that a density-dependent dispersal strategy almost always evolves and that the form of the relationship depends on reproductive rate, type of competition, size of subpopulation equilibrium densities and cost of dispersal. We suggest that future metapopulation models should account for density-dependent dispersal  相似文献   

20.
The fundamental processes that influence metapopulation dynamics (extinction and recolonization) will often depend on landscape structure. Disturbances that increase patch extinction rates will frequently be landscape dependent such that they are spatially aggregated and have an increased likelihood of occurring in some areas. Similarly, landscape structure can influence organism movement, producing asymmetric dispersal between patches. Using a stochastic, spatially explicit model, we examine how landscape-dependent correlations between dispersal and disturbance rates influence metapopulation dynamics. Habitat patches that are situated in areas where the likelihood of disturbance is low will experience lower extinction rates and will function as partial refuges. We discovered that the presence of partial refuges increases metapopulation viability and that the value of partial refuges was contingent on whether dispersal was also landscape dependent. Somewhat counterintuitively, metapopulation viability was reduced when individuals had a preponderance to disperse away from refuges and was highest when there was biased dispersal toward refuges. Our work demonstrates that landscape structure needs to be incorporated into metapopulation models when there is either empirical data or ecological rationale for extinction and/or dispersal rates being landscape dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号