首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shi MZ  Xie DY 《Planta》2011,233(4):787-805
We report metabolic engineering of Arabidopsis red cells and genome-wide gene expression analysis associated with anthocyanin biosynthesis and other metabolic pathways between red cells and wild-type (WT) cells. Red cells of A. thaliana were engineered for the first time from the leaves of production of anthocyanin pigment 1-Dominant (pap1-D). These red cells produced seven anthocyanin molecules including a new one that was characterized by LC–MS analysis. Wild-type cells established as a control did not produce anthocyanins. A genome-wide microarray analysis revealed that nearly 66 and 65% of genes in the genome were expressed in the red cells and wild-type cells, respectively. In comparison with the WT cells, 3.2% of expressed genes in the red cells were differentially expressed. The expression levels of 14 genes involved in the biosynthetic pathway of anthocyanin were significantly higher in the red cells than in the WT cells. Microarray and RT-PCR analyses demonstrated that the TTG1–GL3/TT8–PAP1 complex regulated the biosynthesis of anthocyanins. Furthermore, most of the genes with significant differential expression levels in the red cells versus the WT cells were characterized with diverse biochemical functions, many of which were mapped to different metabolic pathways (e.g., ribosomal protein biosynthesis, photosynthesis, glycolysis, glyoxylate metabolism, and plant secondary metabolisms) or organelles (e.g., chloroplast). We suggest that the difference in gene expression profiles between the two cell lines likely results from cell types, the overexpression of PAP1, and the high metabolic flux toward anthocyanins.  相似文献   

2.
3.
Zhou LL  Shi MZ  Xie DY 《Planta》2012,236(3):825-837
Nitrogen nutrients can regulate anthocyanin biosynthesis in Arabidopsis thaliana. In this investigation, we report the nitrogen regulation of anthocyanin biosynthesis activated by TTG1-GL3/TT8-PAP1 in red pap1-D cells. To understand the mechanisms of nitrogen regulation, we employed red pap1-D cells and wild-type cells (as a control) to examine the effects of different nitrogen treatments on anthocyanin biosynthesis. In general, the higher concentrations of ammonium and high total nitrogen tested (e.g., 58.8 and 29.8?mM total nitrogen consisting of NH(4)NO(3) and KNO(3)) reduced the levels and molecular diversity of anthocyanins; in contrast, the lower concentrations of ammonium and total nitrogen conditions (e.g., 9.4?mM KNO(3) and the depletion of nitrogen) increased the levels and molecular diversity of anthocyanins. An expression analysis of the main regulatory and pathway genes showed that at conditions of higher concentrations of ammonium and total nitrogen, the expression levels of PAP1 and TT8 decreased, but the expression levels of LBD37, 38 and 39, three negative regulators of anthocyanin biosynthesis, increased. In addition, the expression levels of the main pathway genes decreased. In contrast, at conditions of lower concentrations of ammonium and total nitrogen, the expression levels of PAP1, TT8 and the main pathway genes increased, whereas those of LBD37, 38 and 39 decreased. These results show that nitrogen regulation of anthocyanin biosynthesis in red cells undergoes a mechanism by which nitrogen controls the expression of genes encoding both main components of the TTG1-GL3/TT8-PAP1 complex and negative regulators. Based on these observations, we propose that the regulatory mechanism of nitrogen may occur via two pathways to control the expression of genes encoding positive and negative regulators in red pap1-D cells.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis   总被引:3,自引:0,他引:3  
  相似文献   

11.
12.
13.
14.
Sugar-induced anthocyanin accumulation has been observed in many plant species. We observed that sucrose (Suc) is the most effective inducer of anthocyanin biosynthesis in Arabidopsis (Arabidopsis thaliana) seedlings. Other sugars and osmotic controls are either less effective or ineffective. Analysis of Suc-induced anthocyanin accumulation in 43 Arabidopsis accessions shows that considerable natural variation exists for this trait. The Cape Verde Islands (Cvi) accession essentially does not respond to Suc, whereas Landsberg erecta is an intermediate responder. The existing Landsberg erecta/Cvi recombinant inbred line population was used in a quantitative trait loci analysis for Suc-induced anthocyanin accumulation (SIAA). A total of four quantitative trait loci for SIAA were identified in this way. The locus with the largest contribution to the trait, SIAA1, was fine mapped and using a candidate gene approach, it was shown that the MYB75/PAP1 gene encodes SIAA1. Genetic complementation studies and analysis of a laboratory-generated knockout mutation in this gene confirmed this conclusion. Suc, in a concentration-dependent way, induces MYB75/PAP1 mRNA accumulation. Moreover, MYB75/PAP1 is essential for the Suc-mediated expression of the dihydroflavonol reductase gene. The SIAA1 locus in Cvi probably is a weak or loss-of-function MYB75/PAP1 allele. The C24 accession similarly shows a very weak response to Suc-induced anthocyanin accumulation encoded by the same locus. Sequence analysis showed that the Cvi and C24 accessions harbor mutations both inside and downstream of the DNA-binding domain of the MYB75/PAP1 protein, which most likely result in loss of activity.  相似文献   

15.
For adaptation to ever-changing environments,plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates(GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promotin...  相似文献   

16.
17.
生物钟(circadian clock)是激发植物生理特征节律性表达,并使之维持稳定的保守内源调节机制。PRR(PSEUDO-RESPONSE REGULATOR)蛋白家族是生物钟中央振荡器的重要组成部分,调控植物的种子萌发、下胚轴伸长和开花等多种生命过程。花青素(anthocyanin)是植物次生代谢产物,对植物的繁衍、生长发育和抵抗逆境胁迫具有重要作用。该研究以拟南芥(Arabidopsis thaliana)为对象,探讨生物钟PRR蛋白对花青素生物合成的调控功能和分子机制。结果表明:(1)在PRR基因单突变体及多突变体幼苗中,花青素的积累明显降低,某些花青素合成相关基因的表达也显著降低。(2)相反,在PRR5过表达幼苗中,花青素的积累以及某些花青素合成相关基因的表达则显著升高。(3)蛋白相互作用结果显示,PRR5蛋白能与MYB75、TT8、MYB90及MYB113等花青素调控蛋白相互作用,并形成复合物。(4)遗传学分析结果显示,拟南芥PRR5诱导幼苗中花青素的合成依赖于MYB家族花青素调控蛋白。综上认为,生物钟PRR蛋白可能通过PRR5与MYB75、TT8等相互作用,促进拟南芥幼...  相似文献   

18.
Transcriptional regulation of anthocyanin biosynthesis in red cabbage   总被引:6,自引:0,他引:6  
Youxi Yuan  Li-Wei Chiu  Li Li 《Planta》2009,230(6):1141-1153
  相似文献   

19.
The flavonoid pathway leading to anthocyanin biosynthesis in maize is controlled by multiple regulatory genes and induced by various developmental and environmental factors. We have investigated the effect of the regulatory loci R, B, and Pl on anthocyanin accumulation and on the expression of four genes (C2, A1, Bz1, and Bz2) in the biosynthetic pathway during an inductive light treatment. The results show that light-mediated anthocyanin biosynthesis is regulated solely by R; the contributions of B and Pl are negligible in young seedlings. Induction of the A1 and Bz2 genes by high fluence-rate white light requires the expression of a dominant R allele, whereas accumulation of C2 and Bz1 mRNA occurs with either a dominant or recessive allele at R. A1 and Bz2 mRNA accumulate only in response to high fluence-rate white light, but Bz1 is fully expressed in dim red light. Some C2 mRNA is induced by dim red light, but accumulation is far greater in high fluence-rate white light. Furthermore, expression from both dominant and recessive alleles of the regulatory gene R is enhanced by high fluence-rate white light. Seedlings with a recessive allele at R produce functional chalcone synthase protein (the C2 gene product) but accumulate no anthocyanins, suggesting that, in contrast to the R-mediated coordinate regulation of C2 and Bz1 observed in the aleurone, C2 expression in seedlings is independent of R and appears to be regulated by a different light-sensitive pathway.  相似文献   

20.
萜类化合物是植物次生代谢物中结构和数量最多的一类化合物, 它们在植物体内以及植物与环境和其它生命体的相互作用中发挥重要作用。转录因子通过调控代谢通路中基因的转录起始来调节次生代谢物质的产量。目前, 研究发现参与萜类合成的转录因子家族主要有6个, 包括AP2/ERF、bHLH、MYB、NAC、WRKY和bZIP。该文主要对其家族的结构特点、调控模式以及研究进展进行综述, 以期进一步丰富萜烯合成的网络调控, 为植物萜类相关的分子育种、优质栽培和病虫害生物防治等提供新的思路与方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号