首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antizyme inhibitor was highly purified from rat liver by using affinity chromatography. It has some structural resemblance to ornithine decarboxylase (ODC), as judged from Mr, immunoreactivity and reversible binding with antizyme. However, unlike hepatic amounts of ODC and ODC-antizyme complex, that of antizyme inhibitor did not show much fluctuation upon putrescine treatment, whereas it decreased as rapidly as ODC decay in the presence of cycloheximide. These results suggested that antizyme inhibitor is an independent regulatory protein rather than a derivative of ODC. Changes in hepatic amounts of antizyme inhibitor, antizyme and ODC upon feeding suggested that antizyme inhibitor may play a role in ODC regulation by trapping antizyme and thereby suppressing ODC degradation. A monoclonal antibody to rat liver antizyme inhibitor was obtained. This antibody was shown to be utilizable for a simple assay of antizyme-inhibitor activity in tissue extracts.  相似文献   

2.
3.
4.
Antizyme and its endogenous antizyme inhibitor have recently emerged as prominent regulators of cell growth, transformation, centrosome duplication, and tumorigenesis. Antizyme was originally isolated as a negative modulator of the enzyme ornithine decarboxylase (ODC), an essential component of the polyamine biosynthetic pathway. Antizyme binds ODC and facilitates proteasomal ODC degradation. Antizyme also facilitates degradation of a set of cell cycle regulatory proteins, including cyclin D1, Smad1, and Aurora A kinase, as well as Mps1, a protein that regulates centrosome duplication. Antizyme has been reported to function as a tumor suppressor and to negatively regulate tumor cell proliferation and transformation. Antizyme inhibitor binds to antizyme and suppresses its known functions, leading to increased polyamine synthesis, increased cell proliferation, and increased transformation and tumorigenesis. Gene array studies show antizyme inhibitor to be amplified in cancers of the ovary, breast, and prostate. In this review, we summarize the current literature on the role of antizyme and antizyme inhibitor in cancer, discuss how the ratio of antizyme to antizyme inhibitor can influence tumor growth, and suggest strategies to target this axis for tumor prevention and treatment.  相似文献   

5.
Hsieh JY  Yang JY  Lin CL  Liu GY  Hung HC 《PloS one》2011,6(9):e24366
Antizyme (AZ) is a protein with 228 amino acid residues that regulates ornithine decarboxylase (ODC) by binding to ODC and dissociating its homodimer, thus inhibiting its enzyme activity. Antizyme inhibitor (AZI) is homologous to ODC, but has a higher affinity than ODC for AZ. In this study, we quantified the biomolecular interactions between AZ and ODC as well as AZ and AZI to identify functional AZ peptides that could bind to ODC and AZI and inhibit their function as efficiently as the full-length AZ protein. For these AZ peptides, the inhibitory ability of AZ_95-228 was similar to that of AZ_WT. Furthermore, AZ_95-176 displayed an inhibition (IC(50): 0.20 μM) similar to that of AZ-95-228 (IC(50): 0.16 μM), even though a large segment spanning residues 177-228 was deleted. However, further deletion of AZ_95-176 from either the N-terminus or the C-terminus decreased its ability to inhibit ODC. The AZ_100-176 and AZ_95-169 peptides displayed a noteworthy decrease in ability to inhibit ODC, with IC(50) values of 0.43 and 0.37 μM, respectively. The AZ_95-228, AZ_100-228 and AZ_95-176 peptides had IC(50) values comparable to that of AZ_WT and formed AZ-ODC complexes with K(d,AZ-ODC) values of 1.5, 5.3 and 5.6 μM, respectively. Importantly, our data also indicate that AZI can rescue AZ peptide-inhibited ODC enzyme activity and that it can bind to AZ peptides with a higher affinity than ODC. Together, these data suggest that these truncated AZ proteins retain their AZI-binding ability. Thus, we suggest that AZ_95-176 is the minimal AZ peptide that is fully functioning in the binding of ODC and AZI and inhibition of their function.  相似文献   

6.
Abstract

Celecoxib is a clinically available COX-2 inhibitor that has been reported to have antineoplastic activity. It has been proposed as a preventative agent for several types of early neoplastic lesions. Earlier studies have shown that sensitivity of prostatic carcinoma (PCa) to celecoxib is associated with apoptosis; however, these studies have not demonstrated adequately whether this effect is dependent on p53 status. We studied the relation between sensitivity to celecoxib and the phenotypic p53 status of PCa cells lines, LNCaP (wild type p53), PC3 (null p53) and DU145 (mutated p53). Cellular growth was assessed at 24, 48, 72 and 96 h after celecoxib treatment at concentrations of 0, 10, 30, 50, 70 and 100 μM using an MTT assay. Cellular proliferation (Ki-67 expression) was determined by immunocytochemistry. Phenotypic expression of p53 was analyzed by western blotting. The effects of celecoxib on cellular growth and its association with p53 were assessed after down-regulation of p53 using synthetic interfering RNAs (siRNA) in LNCaP cells. Expression of p53 and COX-2 at mRNA levels was assessed by quantitative real time polymerase reaction (qRT-PCR). We found that celecoxib inhibited cellular growth and proliferation in a dose-dependent manner in all three cell lines; LNCaP cells with a native p53 were the most sensitive to celecoxib. We observed a down- regulation effect on p53 in LNCaP cells exposed to ≥ 30 μM celecoxib for 72 h, but found no significant changes in the p53 levels of DU145 cells, which have a mutated p53. Reduced COX-2 expression was found with decreased p53 in LNCaP and PC-3 cells that were exposed to ≥ 20 μM of celecoxib for 72 h, but COX-2 expression was increased in DU145 cells. All three cell lines demonstrated pan-cytotoxicity when exposed to 100 μM celecoxib. When p53 expression was inhibited using siRNA in LNCaP cells, the inhibitory effects on cellular growth usually exerted by celecoxib were not changed significantly. Celecoxib reduces the growth of prostate cancer cell lines in part by decreasing proliferation, which suggests that the inhibition of growth of LNCaP cells by celecoxib is independent of normal levels of native p53.  相似文献   

7.
Ma JM  Suo SY  Ning QJ 《生理科学进展》2008,39(3):255-257
抗酶抑制因子是一种热不稳定蛋白,与鸟氨酸脱羧酶同源,但不具有鸟氨酸脱羧酶活性,经泛素依赖途径被降解.抗酶抑制因子与抗酶高度亲和,抑制抗酶功能,恢复鸟氨酸脱羧酶活性.研究发现,抗酶抑制因子还能够调节多胺转运,抑制细胞周期蛋白D1的降解,以及加速中心粒复制,从而促进细胞增殖及肿瘤发生.  相似文献   

8.
Tumor-associated macrophages (TAMs) have been implicated in promoting tumor growth and development. Here we present evidence that demonstrates that co-inoculation of male athymic nude mice with PC-3 prostate cancer cells and U937 promonocytic cells enhances tumor growth and increases tumor angiogenesis. Male athymic nude mice were co-inoculated with PC-3 and U937 cells (control or IL-4 stimulated) and tumor growth was monitored over time. Immunohistochemical analysis of tumor specimens was performed for proliferation markers (e.g., Ki67) and the effects of IL-4 stimulation on U937 cells were analyzed for chemokine expression. The presence of U937 cells increased the rate of tumor growth in vivo and stimulated increased microvascular density within the tumor bed. Stimulation of U937 cells with IL-4 resulted in a significant increase in several pro-angiogenic and pro-tumor chemokines (e.g., CCL2). Co-inoculation increases prostate cancer growth via upregulation of chemokines that induce angiogenesis within the tumor.  相似文献   

9.
We have demonstrated previously that the inoculation of murine mammary tumor cells genetically modified to express high levels of secretory leukocyte protease inhibitor (2C1) do not develop tumors in immunocompetent mice and these cells are more prone to apoptosis than control cells. The aim of the present study was to evaluate the role of the adaptive immune response in the lack of tumor growth of 2C1 cells and the possibility of using these cells for immunotherapy. The s.c. administration of mock transfected F3II cells induces tumor in BALB/c and Nude mice. However, the inoculation of 2C1 cells develops tumor in Nude but not in BALB/c mice. The inoculation of mock transfected F3II cells to 2C1 immunized BALB/c mice by repeated administration of 2C1 cells (once a week for 3 weeks) developed significantly smaller tumors than those observed in non-immunized mice. Remarkably, survival of tumor-bearing immunized mice was higher than non-immunized animals. Herein, we demonstrate that an immunotherapy with SLPI over-expressing non-irradiated tumor cells which do not develop tumor in immunocompetent mice, partially restrain the tumor growth induced by F3II cells and increase the survival of the mice.  相似文献   

10.
The initiation of new blood vessels through angiogenesis is critical to tumor growth. Tumor cells release soluble angiogenic factors that induce neovascularization, without which nutrients and oxygen would not be available to allow tumors to grow more than 2-3 mm in diameter. This "angiogenic switch" or angiogenic phenotype requires an imbalance between proangiogenic and antiangiogenic factors since the formation of new blood vessels is highly regulated. This review discusses angiogenesis mediators, and the potential for manipulation of angiogenic factors as a practical cancer therapy, particularly in prostate cancer.  相似文献   

11.
《Translational oncology》2021,14(11):101213
Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy (ADT) remains challenging. Many studies indicate that androgen receptor splice variants (ARVs) play a critical role in the development of CRPC, including resistance to the new generation of inhibitors of androgen receptor (AR) action. ARVs are constitutively active and lack the ligand-binding domain (LBD), thereby allowing prostate cancer (PC) to maintain AR activity despite therapies that target the AR (full-length AR; AR-FL). Previously, we have reported that long-term ADT increases the neuroendocrine (NE) hormone – Gastrin Releasing Peptide (GRP) and its receptor (GRP-R) expression in PC cells. Further, we demonstrated that activation of GRP/GRP-R signaling increases ARVs expression by activating NF-κB signaling, thereby promoting cancer progression to CRPC. Most importantly, as a cell surface protein, GRP-R is easily targeted by drugs to block GRP/GRP-R signaling. In this study, we tested if blocking GRP/GRP-R signaling by targeting GRP-R using GRP-R antagonist is sufficient to control CRPC progression. Our studies show that blocking GRP/GRP-R signaling by targeting GRP-R using RC-3095, a selective GRP-R antagonist, efficiently inhibits NF-κB activity and ARVs (AR-V7) expression in CRPC and therapy-induced NEPC (tNEPC) cells. In addition, blocking of GRP/GRP-R signaling by targeting GRP-R can sensitize CRPC cells to anti-androgen treatment (such as MDV3100). Further, preclinical animal studies indicate combination of GRP-R antagonist (targeting ARVs) with anti-androgen (targeting AR-FL) is sufficient to inhibit CRPC and tNEPC tumor growth.  相似文献   

12.
Adiponectin as a growth inhibitor in prostate cancer cells   总被引:8,自引:0,他引:8  
Prostate cancer is associated with obesity. However, the molecular basis of this association is not well known. Adiponectin is a major adipose cytokine that decreases in circulation in obesity and ameliorates obesity. Here, we identify adiponectin as a novel inhibitor in prostate cancer cell growth. Adiponectin occurs in non-proteolytic (full-length adiponectin: f-adiponectin) and proteolytic (globular adiponectin) forms in various oligomeric states (trimer, hexamer, and high molecular weight complex). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay demonstrates that f-adiponectin inhibits prostate cancer cell growth drastically at subphysiological concentrations. Furthermore, velocity sedimentation analysis shows that the high molecular weight complex of f-adiponectin is the inhibitory form. Moreover, f-adiponectin suppresses leptin- and/or insulin-like growth factor-I (IGF-I)-stimulated, androgen-independent DU145 cell growth, and dihydrotestosterone-stimulated, androgen-dependent LNCaP-FGC cell growth. In addition, f-adiponectin enhances doxorubicin inhibition of prostate cancer cell growth. Therefore, f-adiponectin is a molecular mediator between prostate cancer and obesity, and may be therapeutic to prostate cancer.  相似文献   

13.
Neuroblastoma is the most common extracranial solid tumor of childhood. Focal adhesion kinase (FAK) is an intracellular kinase that regulates both cellular adhesion and apoptosis. FAK is overexpressed in a number of human tumors including neuroblastoma. Previously, we have shown that the MYCN oncogene, the primary adverse prognostic indicator in neuroblastoma, regulates the expression of FAK in neuroblastoma. In this study, we have examined the effects of FAK inhibition upon neuroblastoma using a small molecule [1,2,4,5-benzenetetraamine tetrahydrochloride (Y15)] to inhibit FAK expression and the phosphorylation of FAK at the Y397 site. Utilizing both non-isogenic and isogenic MYCN+/MYCN- neuroblastoma cell lines, we found that Y15 effectively diminished phosphorylation of the Y397 site of FAK. Treatment with Y15 resulted in increased detachment, decreased cell viability and increased apoptosis in the neuroblastoma cell lines. We also found that the cell lines with higher MYCN are more sensitive to Y15 treatment than their MYCN negative counterparts. In addition, we have shown that treatment with Y15 in vivo leads to less tumor growth in nude mouse xenograft models, again with the greatest effects seen in MYCN+ tumor xenografts. The results of the current study suggest that FAK and phosphorylation at the Y397 site plays a role in neuroblastoma cell survival, and that the FAK Y397 phosphorylation site is a potential therapeutic target for this childhood tumor.  相似文献   

14.
Ornithine decarboxylase (ODC), antizyme (AZ), and antizyme inhibitor (AIn) play a key role in regulation of intracellular polyamine levels by forming a regulatory circuit through their interactions. To gain insight into their functional importance in cell growth and differentiation, we systematically examined the changes of their expression, cellular polyamine contents, expression of genes related to polyamine metabolism, and β-casein gene expression during murine mammary gland development. The activity of ODC and AZ1 as well as putrescine level were low in the virgin and involuting stages, but they increased markedly during late pregnancy and early lactation when mammary cells proliferate extensively and begin to augment their differentiated function. The level of spermidine and expression of genes encoding spermidine synthase and AIn increased in a closely parallel manner with that of casein gene expression during pregnancy and lactation. On the other hand, the level of spermidine/spermine N 1-acetyltransferase (SSAT) mRNA and AZ2 mRNA decreased during those periods. Immunohistochemical analysis showed the translocation of ODC and AIn between the nucleus and cytoplasm and the continuous presence of AZ in the nucleus during gland development. Reduction of AIn by RNA interference inhibited expression of β-casein gene stimulated by lactogenic hormones in HC11 cells. In contrast, reduction of AZ by AZsiRNA resulted in the small increase of β-casein gene expression. These results suggested that AIn plays an important role in the mammary gland development by changing its expression, subcellular localization, and functional interplay with AZ.  相似文献   

15.
A macromolecular factor that inhibits the activity of the antizyme to ornithine decarboxylase (ODC) was found in rat liver extracts. The factor, 'antizyme inhibitor', was heat-labile, non diffusable and of similar molecular size to ODC. The antizyme inhibitor re-activated ODC that had been inactivated by antizyme, apparently by replacing ODC in a complex with antizyme. Therefore the antizyme inhibitor can be used to assay the amount of inactive ODC-antizyme complex formed in vitro. When assayed by this method, the complex was shown to be eluted before ODC from a Sephadex G-100 column. Significant increase in ODC activity was observed when the antizyme inhibitor was added to crude liver extracts from rats that had been injected with 1,3-diaminopropane to cause decay of ODC activity, suggesting the presence of inactive ODC-antizyme complex in the extracts.  相似文献   

16.
Ornithine decarboxylase (ODC) is the most notable example of a protein degraded by the 26 S proteasome without ubiquitination. Instead, ODC is targeted to degradation by direct binding to a polyamine-induced protein termed antizyme (Az). Antizyme inhibitor (AzI) is an ODC-related protein that does not retain enzymatic activity yet binds Az with higher affinity than ODC. We show here that like ODC, AzI is also a short-lived protein that undergoes proteasomal degradation. However, in contrast to ODC degradation, the degradation of AzI is ubiquitin-dependent and does not require interaction with Az. Moreover, Az binding actually stabilizes AzI by inhibiting its ubiquitination. Substituting the C terminus of AzI with that of ODC, which together with Az constitutes the complete degradation signal of ODC, does not subvert AzI degradation from the ubiquitin-dependent mode to the Az-dependent mode, suggesting dominance of the ubiquitination signal. Our results suggest opposing roles of Az in regulating the degradation of AzI and ODC.  相似文献   

17.
Human BRE, a death receptor-associating intracellular protein, attenuates apoptotic response of human and mouse tumor cell lines to death receptor stimuli in vitro. In this report, we addressed whether the in vitro antiapoptotic effect of BRE could impact on tumor growth in vivo. We have shown that the mouse Lewis lung carcinoma D122 stable transfectants of human BRE expression vector developed into local tumor significantly faster than the stable transfectants of empty vector and parental D122, in both the syngeneic C57BL/6 host and nude mice. In vitro growth of the BRE stable transfectants was, however, not accelerated. No significant difference in metastasis between the transfectants and the parental D122 was detected. Thus, overexpression of BRE promotes local tumor growth but not metastasis. We conclude that the enhanced tumor growth is more likely due to the antiapoptotic activity of BRE than any direct effect of the protein on cell proliferation.  相似文献   

18.
An organ specific protein antigen having an electrophoretic mobility of beta-globulin was demonstrated in human prostate. Its physicochemical properties (relative electrophoretic mobility, diffusion coefficient, molecular weight and relation to different precipitating agents) were determined. The indirect immunofluorescence technique revealed that this antigen is synthesized by the glandular epithelium of the main glands. A statistically significant decrease was found in the concentration of prostatic beta-globulin in tumors of the prostate. The synthesis of this protein was shown to start only in the period of puberty.  相似文献   

19.
Fine-mapping of the cell-division cycle, notably the identification of mitotic kinase signaling pathways, provides novel opportunities for cancer-drug discovery. As a key regulator of multiple steps during mitotic progression across eukaryotic species, the serine/threonine-specific Polo-like kinase 1 (Plk1) is highly expressed in malignant cells and serves as a negative prognostic marker in specific human cancer types . Here, we report the discovery of a potent small-molecule inhibitor of mammalian Plk1, BI 2536, which inhibits Plk1 enzyme activity at low nanomolar concentrations. The compound potently causes a mitotic arrest and induces apoptosis in human cancer cell lines of diverse tissue origin and oncogenome signature. BI 2536 inhibits growth of human tumor xenografts in nude mice and induces regression of large tumors with well-tolerated intravenous dose regimens. In treated tumors, cells arrest in prometaphase, accumulate phosphohistone H3, and contain aberrant mitotic spindles. This mitotic arrest is followed by a surge in apoptosis, detectable by immunohistochemistry and noninvasive optical and magnetic resonance imaging. For addressing the therapeutic potential of Plk1 inhibition, BI 2536 has progressed into clinical studies in patients with locally advanced or metastatic cancers.  相似文献   

20.
The Aurora kinases are essential for the regulation of chromosome segregation and cytokinesis during mitosis. Aberrant expression and activity of these kinases occur in a wide range of human tumors, and lead to aneuploidy and tumorigenesis. Here we report the discovery of a highly potent and selective small-molecule inhibitor of Aurora kinases, VX-680, that blocks cell-cycle progression and induces apoptosis in a diverse range of human tumor types. This compound causes profound inhibition of tumor growth in a variety of in vivo xenograft models, leading to regression of leukemia, colon and pancreatic tumors at well-tolerated doses. Our data indicate that Aurora kinase inhibition provides a new approach for the treatment of multiple human malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号