首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi J  Ebrik MA  Wyman CE 《Bioresource technology》2011,102(19):8930-8938
Dacotah switchgrass was pretreated with sulfuric acid concentrations of 0.5, 1.0, and 2.0 wt.% at 140, 160, and 180 °C and with 1 and 3 wt.% sulfur dioxide at 180 °C over a range of times. Sulfur dioxide loadings of 0%, 1%, 3%, 5%, and 10%wt.% of dry biomass were also tested at 180 °C for 10 min. Sugar yields were tracked for pretreatment and subsequent enzymatic hydrolysis to identify conditions for the highest total sugar yields. Pretreatment with 1 wt.% dilute sulfuric acid at 140 °C for 40 min followed by enzymatic hydrolysis with 48.6 mg enzyme/g initial glucan in raw biomass resulted in ~86% of theoretical yield for glucose and xylose combined. For sulfur dioxide pretreatment, the highest total sugar yield of about 87% occurred at 5% SO? for 10 min and 180 °C. However, xylose yields were higher at shorter times and glucose yields at longer times.  相似文献   

2.
The overall goal of this work was to develop a saccharification method for the production of third generation biofuel (i.e. bioethanol) using feedstock of the invasive marine macroalga Gracilaria salicornia. Under optimum conditions (120 °C and 2% sulfuric acid for 30 min), dilute acid hydrolysis of the homogenized invasive plants yielded a low concentration of glucose (4.1 mM or 4.3 g glucose/kg fresh algal biomass). However, two-stage hydrolysis of the homogenates (combination of dilute acid hydrolysis with enzymatic hydrolysis) produced 13.8 g of glucose from one kilogram of fresh algal feedstock. Batch fermentation analysis produced 79.1 g EtOH from one kilogram of dried invasive algal feedstock using the ethanologenic strain Escherichia coli KO11. Furthermore, ethanol production kinetics indicated that the invasive algal feedstock contained different types of sugar, including C(5) -sugar. This study represents the first report on third generation biofuel production from invasive macroalgae, suggesting that there is great potential for the production of renewable energy using marine invasive biomass.  相似文献   

3.
The overall goal of this work was to develop a saccharification method for the production of third generation biofuel (i.e.bioethanol) using feedstock of the invasive marine macroalga Gracilaria salicornia.Under optimum conditions (120 C and 2% sulfuric acid for 30 min),dilute acid hydrolysis of the homogenized invasive plants yielded a low concentration of glucose (4.1 mM or 4.3 g glucose/kg fresh algal biomass).However,two-stage hydrolysis of the homogenates (combination of dilute acid hydrolysis with enz...  相似文献   

4.
Hydrolysis of four timber species (aspen, balsam fir, basswood, and red maple) and switchgrass was studied using dilute sulfuric acid at 50 g dry biomass/L under similar conditions previously described as acid pretreatment. The primary goal was to obtain detailed kinetic data of xylose formation and degradation from a match between a first order reaction model and the experimental data at various final reactor temperatures (160-190 degrees C), sulfuric acid concentrations (0.25-1.0% w/v), and particle sizes (28-10/20 mesh) in a glass-lined 1L well-mixed batch reactor. Reaction rates for the generation of xylose from hemicellulose and the generation of furfural from xylose were strongly dependent on both temperature and acid concentration. However, no effect was observed for the particle sizes studied. Oligomer sugars, representing incomplete products of hydrolysis, were observed early in the reaction period for all sugars (xylose, glucose, arabinose, mannose, and galactose), but were reduced to low concentrations at later times (higher hemicellulose conversions). Maximum yields for xylose ranged from 70% (balsam) to 94% (switchgrass), for glucose from 10.6% to 13.6%, and for other minor sugars from 8.6% to 58.9%. Xylose formation activation energies and the pre-exponential factors for the timber species and switchgrass were in a range of 49-180 kJ/mol and from 7.5 x 10(4) to 2.6 x 10(20)min(-1), respectively. In addition, for xylose degradation, the activation energies and the pre-exponential factors ranged from 130 to 170 kJ/mol and from 6.8 x 10(13) to 3.7 x 10(17)min(-1), respectively. There was a near linear dependence on acid concentration observed for xylose degradation. Our results suggest that mixtures of biomass species may be processed together and still achieve high yields for all species.  相似文献   

5.
Maleic acid-catalyzed hemicellulose hydrolysis reaction in corn stover was analyzed by kinetic modeling. Kinetic constants for Saeman and biphasic hydrolysis models were analyzed by an Arrhenius-type expansion which include activation energy and catalyst concentration factors. The activation energy for hemicellulose hydrolysis by maleic acid was determined to be 83.3 +/- 10.3 kJ/mol, which is significantly lower than the reported E(a) values for sulfuric acid catalyzed hemicellulose hydrolysis reaction. Model analysis suggest that increasing maleic acid concentrations from 0.05 to 0.2 M facilitate improvement in xylose yields from 40% to 85%, while the extent of improvement flattens to near-quantitative by increasing catalyst loading from 0.2 to 1 M. The model was confirmed for the hydrolysis of corn stover at 1 M maleic acid concentrations at 150 degrees C, resulting in a xylose yield of 96% of theoretical. The refined Saeman model was used to evaluate the optimal condition for monomeric xylose yield in the maleic acid-catalyzed reaction: low temperature reaction conditions were suggested, however, experimental results indicated that bi-phasic behavior dominated at low temperatures, which may be due to the insufficient removal of acetyl groups. A combination of experimental data and model analysis suggests that around 80-90% xylose yields can be achieved at reaction temperatures between 100 and 150 degrees C with 0.2 M maleic acid.  相似文献   

6.
Jeong TS  Kim YS  Oh KK 《Bioresource technology》2011,102(22):10529-10534
Two-stage acid hydrolysis was conducted on easy reacting cellulose and resistant reacting cellulose of fractionated Gelidium amansii (f-GA). Acid hydrolysis of f-GA was performed at between 170 and 200 °C for a period of 0-5 min, and an acid concentration of 2-5% (w/v, H2SO4) to determine the optimal conditions for acid hydrolysis. In the first stage of the acid hydrolysis, an optimum glucose yield of 33.7% was obtained at a reaction temperature of 190 °C, an acid concentration of 3.0%, and a reaction time of 3 min. In the second stage, a glucose yield of 34.2%, on the basis the amount of residual cellulose from the f-GA, was obtained at a temperature of 190 °C, a sulfuric acid concentration of 4.0%, and a reaction time 3.7 min. Finally, 68.58% of the cellulose derived from f-GA was converted into glucose through two-stage acid saccharification under aforementioned conditions.  相似文献   

7.
In this study, sulfamic acid-catalyzed pretreatment and subsequent enzymatic hydrolysis was conducted to produce biosugar from the marine macro-alga Gracilaria verrucosa. Sulfamic acid has dual active sites and is a green catalyst. Optimized sulfamic acid pretreatment at 130°C with 7.5% biomass and 100 mM sulfamic acid for 90 min yielded 39.9% total reducing sugar (TRS). Subsequent enzymatic hydrolysis yielded 69.1% TRS. These results indicate the potential of sulfamic acidcatalyzed pretreatment and subsequent enzymatic hydrolysis in producing biosugars using a biorefinery process.  相似文献   

8.
Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5–10 % (w/w)] and microalgal biomass [20–140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.  相似文献   

9.
Hydrolysis of the straw material Paja Brava, a sturdy grass characteristic for the high plains of Bolivia, was studied in order to find suitable conditions for hydrolysis of the hemicellulose and cellulose parts. Dried Paja Brava material was pre-steamed, impregnated with dilute sulfuric acid (0.5% or 1.0% by wt), and subsequently hydrolyzed in a reactor at temperatures between 170 and 230 degrees C for a reaction time between 3 and 10 min. The highest yield of xylose (indicating efficient hydrolysis of hemicellulose) were found at a temperature of 190 degrees C, and a reaction time of 5-10 min, whereas considerably higher temperatures (230 degrees C) were needed for hydrolysis of cellulose. Fermentability of hemicellulose hydrolyzates was tested using the xylose-fermenting yeast species Pichia stipitis, Candida shehatae and Pachysolen tannophilus. The fermentability of hydrolyzates decreased strongly for hydrolyzates produced at temperatures higher than 200 degrees C.  相似文献   

10.
Agricultural and herbaceous feedstocks may contain appreciable levels of sucrose. The goal of this study was to evaluate the survivability of sucrose and its hydrolysis products, fructose and glucose, during dilute sulfuric acid processing at conditions typically used to pretreat lignocellulose biomass. Solutions containing 25g/l sucrose with 0.1-2.0% (w/w) sulfuric acid concentrations were treated at temperatures of 160-200 degrees C for 3-12min. Sucrose was observed to completely hydrolyze at all treatment conditions. However, appreciable concentrations of fructose and glucose were detected and glucose was found to be significantly more stable than fructose. Different mathematical approaches were used to fit the kinetic parameters for acid-catalyzed thermal degradation of these sugars. Since both sugars may survive dilute acid pretreatment, they could provide an additional carbon source for production of ethanol and other bio-based products.  相似文献   

11.
A batch reactor was used to investigate the dilute acid hydrolysis reaction of alpha-cellulose and sugar decomposition reactions. Varying the sulfuric acid concentration from 0.07 to 5.0% for reaction temperatures between 180 and 220°C significantly affected glucose yields, which ranged from about 70% to below 10%. Increasing the reaction temperature enhanced this effect. Similar experimental results were obtained for the decomposition of xylose. For sugar decomposition reactions, less than 0.3 g/L of furfural and 5-hydroxymethylfurfural (5-HMF) were produced from glucose and xylose in the absence of sulfuric acid at 190°C and 15 min of reaction time, but adding a small amount of sulfuric acid (0.5%) dramatically increased the decomposition rate and led to the formation of four undesireable products: formic acid, 5-HMF, acetic acid, and furfural. In both hydrolysis and fermentation reactions formic acid, acetic acid, and 5-HMF severely inhibited ethanol fermentation, while furfural had less of an inhibition effect.  相似文献   

12.
Hemicellulosic hydrolyzate obtained from rice straw was evaluated to determine if it was a suitable fementation medium for the production of xylitol byCandida mogii ATCC 18364. To obtain xylose selectively from rice straw, it is important to establish rapid hydrolysis conditions that yield xylose-rich substrates. The results of hydrolysis experiments indicated that the optimal reaction conditions for the recovery of xylose from rice straw hemicellulose were obtained using a sulfuric acid concentration of 1.5%, a reaction temperature of 130°C, a reaction time of 20 min and a solid to liquid ratio of 1∶10. Because the fermentation of concentrated acid hydrolyzates can be inhibited by compounds present in the raw material or produced during the hydrolysis process, various methods were tested to determine if they could detoxify the hydrolyzates and thus improve xylitol production. The greatest xylitol yield (0.53 g/g) and volumetric productivity (0.38 g/L·h) were obtained when an overlimed hydrolyzate was treated with activated charcoal.  相似文献   

13.
A 2(2) full factorial design was employed to evaluate the effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate obtained in a 250-L reactor. The acid loading and the residence time were varied from 70 to 130 mg acid per gram of dry bagasse and from 10 to 30 min, respectively, while the temperature (121 degrees C) and the bagasse loading (10%) were kept constant. Both the sulfuric acid loading and the residence time influenced the concentrations of xylose and inhibitors in the hydrolysate. The highest xylose concentration (22.71 g/L) was achieved when using an acid loading of 130 mg/g and a residence time of 30 min. These conditions also led to increased concentrations of inhibiting byproducts in the hydrolysate. All of the hydrolysates were vacuum-concentrated to increase the xylose concentration, detoxified by pH alteration and adsorption into activated charcoal, and used for xylitol bioproduction in a stirred tank reactor. Neither the least (70 mg/g, 10 min) nor the most severe (130 mg/g, 30 min) hydrolysis conditions led to the best xylitol production (37.5 g/L), productivity (0.85 g/L h), and yield (0.78 g/g).  相似文献   

14.
In this study, we developed a lime addition–capacitive deionization (CDI) hybrid process that can efficiently remove acetic acid and sulfuric acid from the model mixture of glucose, xylose, acetic acid, and sulfuric acid, which are the major components from the biomass hydrolyzate by acid hydrolysis. The key parameters of lime addition process (type of lime, amount of lime, stirrer speed, and reaction time) and CDI process (voltage, flow rate, and feed concentration) were also optimized. In the lime addition process, the optimal lime type, (sulfuric acid + acetic acid)/lime molar ratio, stirrer speed, and reaction time for the removal of sulfuric acid were CaCO3, 1:1, 200 rpm, and 6 min, respectively. For the CDI process, the optimal voltage and flow rate were 1.2 V and 20 mL/min, respectively. The efficiency of acid removal increased as the initial acetic acid concentration decreased. This hybrid process was able to remove 98.08% of sulfuric acid and 76.97% of acetic acid from the mixture of glucose, xylose, acetic acid, and sulfuric acid. The process was able to recover almost all sugar (>99%) at high purity (97.53%).  相似文献   

15.
Steam explosion is the most promising technology to replace conventional acid hydrolysis of lignocellulose for biomass pretreatment. In this paper, a new screw-steam-explosive extruder was designed and explored for xylose production and lignocellulose biorefinery at the pilot scale. We investigated the effect of different chemicals on xylose yield in the screw-steam-explosive extrusion process, and the xylose production process was optimized as followings: After pre-impregnation with sulfuric acid at 80 °C for 3 h, corncob was treated at 1.55 MPa with 9 mg sulfuric acid/g dry corncob (DC) for 5.5 min, followed by countercurrent extraction (3 recycles), decoloration (activated carbon dosage 0.07 g/g sugar, 75 °C for 40 min), and ion exchange (2 batches). Using this process, 3.575 kg of crystal xylose was produced from 22 kg corncob, almost 90 % of hemicellulose was released as monomeric sugar, and only a small amount of by-products was released (formic acid, acetic acid, fural, 5-hydroxymethylfurfural, and phenolic compounds were 0.17, 1.14, 0.53, 0.19, and 1.75 g/100 g DC, respectively). All results indicated that the screw-steam-explosive extrusion provides a more effective way to convert hemicellulose into xylose and could be an alternative method to traditional sulfuric acid hydrolysis process for lignocellulose biorefinery.  相似文献   

16.
In the bioconversion of lignocellulosic materials to ethanol, pretreatment of the material prior to enzymatic hydrolysis is essential to obtain high overall yields of sugar and ethanol. In this study, steam pretreatment of fast-growing Salix impregnated with sulfuric acid has been investigated by varying the temperature (180-210 degrees C), the residence time (4, 8 or 12 min), and the acid concentration (0.25% or 0.5% (w/w) H(2)SO(4)). High sugar recoveries were obtained after pretreatment, and the highest yields of glucose and xylose after the subsequent enzymatic hydrolysis step were 92% and 86% of the theoretical, respectively, based on the glucan and xylan contents of the raw material. The most favorable pretreatment conditions regarding the overall sugar yield were 200 degrees C for either 4 or 8 min using 0.5% sulfuric acid, both resulting in a total of 55.6g glucose and xylose per 100g dry raw material. Simultaneous saccharification and fermentation experiments were performed on the pretreated slurries at an initial water-insoluble content of 5%, using ordinary baker's yeast. An overall theoretical ethanol yield of 79%, based on the glucan and mannan content in the raw material, was obtained.  相似文献   

17.
The objective of this study was to determine the effectiveness of different organic acids (maleic, succinic, and oxalic acid) on enzymatic hydrolysis and fermentation yields of wheat straw. It was also aimed to optimize the process conditions (temperature, acid concentration, and pretreatment time) by using response surface methodology (RSM). In line with this objective, the wheat straw samples were pretreated at three different temperatures (170, 190, and 210°C), acid concentrations (1%, 3%, and 5%) and pretreatment time (10, 20, and 30 min). The findings show that at extreme pretreatment conditions, xylose was solubilized in liquid phase, causing an increase in cellulose and lignin content of biomass. Enzymatic hydrolysis experiments revealed that maleic and oxalic acids were quite effective at achieving high sugar yields (>90%) from wheat straw. In contrast, the highest sugar yields were 50–60%, when the samples were pretreated with succinic acid, indicating that succinic acid was not as effective. The optimum process conditions for maleic acid were, 210°C, 1.08% acid concentration, and 19.8 min; for succinic acid 210°C, 5% acid concentration, and 30 min; for oxalic acid 210°C, 3.6% acid concentration, and 16.3 min. The ethanol yields obtained at optimum conditions were 80, 79, and 59% for maleic, oxalic and succinic acid, respectively. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1487–1493, 2016  相似文献   

18.
Liquefaction of lignin by polyethyleneglycol and glycerol   总被引:2,自引:0,他引:2  
Jin Y  Ruan X  Cheng X  Lü Q 《Bioresource technology》2011,102(3):3581-3583
Enzymatic hydrolysis lignin (EHL), isolated from the enzymatic hydrolysis residues of the biomass, was liquefied using the mixed solvents of polyethyleneglycol (PEG) and glycerol at the temperature of 130-170°C with sulfuric acid as a catalyst. The influences of liquefaction parameters, such as the molecular weight of PEG, mass ratio of sulfuric acid to EHL, liquefaction temperature and time, and mass ratio of liquid (liquefying cosolvent) to solid (EHL) on the residue content and hydroxyl number were discussed. The FT-IR spectrum result showed that the liquefaction product of EHL was polyether polyol. The hydroxyl number of the liquefaction product was 80-120 mgKOH/g higher than that of PEG.  相似文献   

19.
Pentosan hydrolysis at low aqueous liquid-to-biomass ratios (2.5-15 mL/g) with sulfuric acid as the catalyst is studied in the temperature range of 125-155 degrees C. To facilitate heat transfer and mixing a second insoluble oil is added to the reaction mixture. It is found that even at high slurry concentrations, the reaction is the rate-controlling step. In addition, such systems give higher pentosan yields compared with dilute slurry systems. This is explained using the concept of acid loading which is defined as the acid present per unit mass of biomass.  相似文献   

20.
The production of fermentable sugars from olive tree biomass was studied by dilute acid pretreatment and further saccharification of the pretreated solid residues. Pretreatment was performed at 0.2%, 0.6%, 1.0% and 1.4% (w/w) sulphuric acid concentrations while temperature was in the range 170-210 degrees C. Attention is paid to sugar recovery both in the liquid fraction issued from pretreatment (prehydrolysate) and that in the water-insoluble solid (WIS). As a maximum, 83% of hemicellulosic sugars in the raw material were recovered in the prehydrolysate obtained at 170 degrees C, 1% sulphuric acid concentration, but the enzyme accessibility of the corresponding pretreated solid was not very high. In turn, the maximum enzymatic hydrolysis yield (76.5%) was attained from a pretreated solid (at 210 degrees C, 1.4% acid concentration) in which cellulose solubilization was detected; moreover, sugar recovery in the prehydrolysate was the poorest one among all the experiments performed. To take account of fermentable sugars generated by pretreatment and the glucose released by enzymatic hydrolysis, an overall sugar yield was calculated. The maximum value (36.3 g sugar/100 g raw material) was obtained when pretreating olive tree biomass at 180 degrees C and 1% sulphuric acid concentration, representing 75% of all sugars in the raw material. Dilute acid pretreatment improves results compared to water pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号