首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tumorhead (TH) is a maternally expressed gene in Xenopus laevis, that when overexpressed, increased proliferation of ectodermal derivatives and inhibited neural and epidermal differentiation. However, injection of anti-TH antibodies inhibited cleavage of all blastomeres, not only those contributing to the ectoderm. The injection of TH morpholino antisense oligonucleotide (TH-MO), which inhibits translation of TH mRNA, did not affect early cleavage but inhibited cell division in both the neural field and epidermis. This was accompanied by the inhibition of neural and epidermal markers. TH-MO did not affect the formation and differentiation of mesoderm and endoderm derivatives. Our overexpression and loss-of-function studies demonstrated that TH plays an important role in differentiation of the ectoderm by regulating cell proliferation. They also supported the conclusion that the maternal component of TH may affect the cell cycle in all cells, while the zygotic component has a germ layer-specific effect on the ectoderm.  相似文献   

3.
The expression of the Ca2+-dependent epithelial cell adhesion molecule E-cadherin (also known as uvomorulin and L-CAM) in the early stages of embryonic development of Xenopus laevis was examined. E-Cadherin was identified in the Xenopus A6 epithelial cell line by antibody cross-reactivity and several biochemical characteristics. Four independent mAbs were generated against purified Xenopus E-cadherin. All four mAbs recognized the same polypeptides in A6 cells, adult epithelial tissues, and embryos. These mAbs inhibited the formation of cell contacts between A6 cells and stained the basolateral plasma membranes of A6 cells, hepatocytes, and alveolar epithelial cells. The time of E-cadherin expression in early Xenopus embryos was determined by immunoblotting. Unlike its expression in early mouse embryos, E-cadherin was not present in the eggs or early blastula of Xenopus laevis. These findings indicate that a different Ca2+-dependent cell adhesion molecule, perhaps another member of the cadherin gene family, is responsible for the Ca2+-dependent adhesion between cleavage stage Xenopus blastomeres. Detectable accumulation of E-cadherin started just before gastrulation at stage 9 1/2 and increased rapidly up to the end of gastrulation at stage 15. In stage 15 embryos, specific immunofluorescence staining of E-cadherin was discernible only in ectoderm, but not in mesoderm and endoderm. The ectoderm at this stage consists of two cell layers. The outer cell layer of ectoderm was stained intensely, and staining was localized to the basolateral plasma membrane of these cells. Lower levels of staining were observed in the inner cell layer of ectoderm. The coincidence of E-cadherin expression with the process of gastrulation and its restriction to the ectoderm indicate that it may play a role in the morphogenetic movements of gastrulation and resulting segregation of embryonic germ layers.  相似文献   

4.
In gastrulae of Xenopus laevis, various morphological types of intercellular approximation occur between the dorsal ectoderm and chordamesoderm. Ruthenium red staining reveals that in some areas the glycocalyces of heterotypic cells appear to come into contact. These observations, in conjunction with the results of previous studies, suggest that cell contacts offer a possible pathway for the transmission of inductive stimuli, and that they may be important in the regionalization of the neuralized ectoderm.  相似文献   

5.
Summary Dissociated prospective ectoderm cells from Xenopus laevis embryos divide autonomously up to the 17th division cycle of the embryo. To examine the requirements for the further proliferation of these cells, the continuation of cell division in compact ectodermal explants beyond the 17th division cycle has been studied. Such explants develop into aggregates of epidermal cells, as can be shown immunohistochemically with an anti-serum against Xenopus epidermal cytokeratin. Cell division in these explants is comparable to the in vivo proliferation rate at least during the first 24 h of cultivation, that is, well beyond the 17th division cycle. Thus, epidermal cells are provided with all the factors necessary for continued proliferation, but these can be effective only when the cells form tight aggregates. The long-term changes in cell number are complex. Mitotic figures are present until the explants disintegrate after 3–4 days. However, the total cell number per explant does not increase during later development. The production of cells by mitotic divisions is likely to be countered by the loss of cells due to cell death, which is indicated by the presence of pyknotic nuclei.  相似文献   

6.
Studies of morphogenesis in early Xenopus embryos have focused primarily on gastrulation and neurulation. Immediately following these stages is another period of intense morphogenetic activity, the neurula-to-tailbud transition. During this period the embryo is transformed from the spherical shape of the early stages into the long, thin shape of the tailbud stages. While gastrulation and neurulation depend largely on active cell rearrangement and cell shape changes in dorsal tissues, we find that the neurula-to-tailbud transition depends in part on activities of ventral cells. Ventral explants of neurula lengthen autonomously as much as the ventral sides of intact embryos, while dorsal explants lengthen less than the dorsal sides of intact embryos. Analyses of cell division, cell shapes, and cell rearrangement by transplantation of labeled cells and by time lapse recordings in live intact embryos concur that cell rearrangements in ventral mesoderm and ectoderm contribute to the autonomous anterior-posterior axis lengthening of ventral explants between neurula and tailbud stages.  相似文献   

7.
Transforming growth factor-beta1-stimulated clone 22 (TSC-22) encodes a leucine zipper-containing protein that is highly conserved. During mouse embryogenesis, TSC-22 is expressed at the site of epithelial-mesenchymal interaction. Here, we isolated Xenopus laevis TSC-22 (XTSC-22) and analyzed its function in early development. XTSC-22 mRNA was first detected in the ectoderm of late blastulae. Translational knockdown using XTSC-22 antisense morpholino oligonucleotides (XTSC-22-MO) caused a severe delay in blastopore closure in gastrulating embryos. This was not due to mesoderm induction or convergent-extension, as confirmed by whole-mount in situ hybridization and animal cap assay. Cell lineage tracing revealed that migration of ectoderm cells toward blastopore was disrupted in XTSC-22-depleted embryos, and these embryos had a marked increase in the number of dividing cells. In contrast, cell division was suppressed in XTSC-22 mRNA-injected embryos. Co-injection of XTSC-22-MO and mRNA encoding p27Xic1, which inhibits cell cycle promotion by binding cyclin/Cdk complexes, reversed aberrant cell division. This was accompanied by rescue of the delay in blastopore closure and cell migration. These results indicate that XTSC-22 is required for cell movement during gastrulation though cell cycle regulation.  相似文献   

8.
The neural crest, a population of multipotent progenitor cells, is a defining feature of vertebrate embryos. Neural crest precursor cells arise at the neural plate border in response to inductive signals, but much remains to be learned about the molecular mechanisms underlying their induction. Here we show that the protooncogene c-Myc is an essential early regulator of neural crest cell formation in Xenopus. c-myc is localized at the neural plate border prior to the expression of early neural crest markers, such as slug. A morpholino-mediated "knockdown" of c-Myc protein results in the absence of neural crest precursor cells and a resultant loss of neural crest derivatives. These effects are not dependent upon changes in cell proliferation or cell death. Instead, our findings reveal an important and unexpected role for c-Myc in the specification of cell fates in the early ectoderm.  相似文献   

9.
10.
TGF-beta signaling is essential for development and proliferative homeostasis. During embryogenesis, maternal determinants act in concert with TGF-beta signals to form mesoderm and endoderm. In contrast, ectoderm specification requires the TGF-beta response to be attenuated, although the mechanisms by which this is achieved remain unknown. In a functional screen for ectoderm determinants, we have identified Ectodermin (Ecto). In Xenopus embryos, Ecto is essential for the specification of the ectoderm and acts by restricting the mesoderm-inducing activity of TGF-beta signals to the mesoderm and favoring neural induction. Ecto is a RING-type ubiquitin ligase for Smad4, a TGF-beta signal transducer. Depletion of Ecto in human cells enforces TGF-beta-induced cytostasis and, moreover, plays a causal role in limiting the antimitogenic effects of Smad4 in tumor cells. We propose that Ectodermin is a key switch in the control of TGF-beta gene responses during early embryonic development and cell proliferation.  相似文献   

11.
Ectoderm pieces explanted from embryos of Xenopus laevis were cultured and examined for differentiation of hatching gland cells, using immunoreactivity against anti-XHE (Xenopus hatching enzyme) as a marker. The anterio-dorsal ectoderm excised from stage 12-13 (mid-late gastrula) embryos developed hatching gland cells. Meanwhile, the posterio-, but not the anterio-dorsal ectoderm from stage 11 (early gastrula) embryos developed these cells, although it is not fated to do so during normogenesis. This hatching gland cell differentiation from stage 11 posterior ectoderm was not affected by conjugated sandwich culture with the mesoderm but was suppressed when explants contained an anterior portion of the ectoderm. Conjugated cultures of anterior and posterior portions of the ectoderm in various combinations indicated that differentiation of hatching gland cells from stage 11 posterior and stage 12 anterior portions was suppressed specifically by stage 11 anterior ectoderm. Northern blot analyses of cultured explants showed that XHE was expressed in association with XA-1, suggesting its dependence on the anteriorized state. These results indicate that the planar signal(s) emanating from stage 11 anterior ectoderm participates in suppression of the expression of the anteriorized phenotype so that an ordered differentiation along the anteroposterior axis of the surface ectoderm is accomplished.  相似文献   

12.
Cell proliferation was examined during early embryogenesis of the newt ( Triturus pyrrhogaster ) by various methods. After the two-cell stage, at 23°C, the blastomere (cell) number per whole embryo increased logarithmically until the mid-blastula stage (for about 19 hr) and the rate of increase slowed down in and after the late blastula stage. On the other hand, the synchronous cleavage of the blastomeres at the animal pole continued for 18 hr until the twelfth cleavage (mid-blastula) and the transition from synchronous to asynchronous division occurred abruptly at and after the thirteenth cell division (late blastula). The study also showed that the presumptive neuro-ectoderm consisted mainly of cells of the fifteenth generation (G-15) at the onset of gastrulation (pigment stage).
The present study suggested that the number of ectodermal cells of the early gastrula (stage 12a) nearly doubled during gastrulation at the presumptive neuro-ectoderm. This means that most of the ectodermal cells are in G-16 at the end of gastrulation. On the other hand, both mitotic activity and the rate of cell increase gradually diminished during gastrulation in the ectoderms of both the presumptive neural and epidermal regions, and there are evidently significant differences in both activities between the neuro-ectoderm and the epidermal ectoderm after stage 13b: the epidermal ectoderm showed greater decrease in the rate of both mitotic activity and cell proliferation than the neuro-ectoderm.
These facts suggested that, whether the ectodermal cells will differentiate into neural cells or epidermal cells is determined during G-15 or G-16 in normal primary induction.  相似文献   

13.
At the blastocyst stage of pre-implantation mouse development, close contact of polar trophectoderm with the inner cell mass (ICM) promotes proliferation of undifferentiated diploid trophoblast. However, ICM/polar trophectoderm intimacy is not maintained during post-implantation development, raising the question of how growth of undifferentiated trophoblast is controlled during this time. The search for the cellular basis of trophoblast proliferation in post-implantation development was addressed with an in vitro spatial and temporal analysis of fibroblast growth factor 4-dependent trophoblast stem cell potential. Two post-implantation derivatives of the polar trophectoderm - early-streak extra-embryonic ectoderm and late-streak chorionic ectoderm - were microdissected into fractions along their proximodistal axis and thoroughly dissociated for trophoblast stem cell culture. Results indicated that cells with trophoblast stem cell potential were distributed throughout the extra-embryonic/chorionic ectoderm, an observation that is probably attributable to non-coherent growth patterns exhibited by single extra-embryonic ectoderm cells at the onset of gastrulation. Furthermore, the frequency of cells with trophoblast stem cell potential increased steadily in extra-embryonic/chorionic ectoderm until the first somite pairs formed, decreasing thereafter in a manner independent of proximity to the allantois. Coincident with occlusion of the ectoplacental cavity via union between chorionic ectoderm and the ectoplacental cone, a decline in the frequency of mitotic chorionic ectoderm cells in vivo, and of trophoblast stem cell potential in vitro, was observed. These findings suggest that the ectoplacental cavity may participate in maintaining proliferation throughout the developing chorionic ectoderm and, thus, in supporting its stem cell potential. Together with previous observations, we discuss the possibility that fluid-filled cavities may play a general role in the development of tissues that border them.  相似文献   

14.
The development of the vertebrate nervous system is initiated in amphibia by inductive interactions between ectoderm and a region of the embryo called the organizer. The organizer tissue in the dorsal lip of the blastopore of Xenopus and Hensen's node in chick embryos have similar neural inducing properties when transplanted into ectopic sites in their respective embryos. To begin to determine the nature of the inducing signals of the organizer and whether they are conserved across species we have examined the ability of Hensen's node to induce neural tissue in Xenopus ectoderm. We show that Hensen's node induces large amounts of neural tissue in Xenopus ectoderm. Neural induction proceeds in the absence of mesodermal differentiation and is accompanied by tissue movements which may reflect notoplate induction. The competence of the ectoderm to respond to Hensen's node extends much later in development than that to activin-A or to induction by vegetal cells, and parallels the extended competence to neural induction by axial mesoderm. The actions of activin-A and Hensen's node are further distinguished by their effects on lithium-treated ectoderm. These results suggest that neural induction can occur efficiently in response to inducing signals from organizer tissue arrested at a stage prior to gastrulation, and that such early interactions in the blastula may be an important component of neural induction in vertebrate embryos.  相似文献   

15.
NEURAL COMPETENCE AND CELL LINEAGE OF GASTRULA ECTODERM OF NEWT EMBRYO   总被引:1,自引:1,他引:0  
The change in the capacity to form neural structures was quantitatively analyzed in both intact and isolated ectoderms of Cynops pyrrhogaster gastrula. The frequency of explants with induced neural structures abruptly decreases between stage 12c and stage 13b in intact ectoderm, and between 12 hr and 18 hr preculture in isolated ectoderm. The quantitative analysis also made clear that the size of the cell population of induced neural structures was gradually reduced with the aging of the ectoderm. The authors simultaneously examined the cell proliferation of early gastrula ectoderm and confirmed that all ectodermal cells divided at least once within 18 hr at 23°C, after which the neural competence of the ectoderm completely disappeared.
The relationships between neural competence and cell lineage (cell generation) of the ectoderm are discussed in the light of these findings.  相似文献   

16.
The distribution of dividing cells is described for embryos and larvae of amphioxus (Branchiostoma floridae) pulse labeled with bromodeoxyuridine. Because cell division is assessed for all of the developing tissues, this is the first comprehensive study of developmental cell proliferation for an animal lacking a stereotyped cell lineage. In amphioxus, cell divisions are virtually synchronous during cleavage, but become asynchronous at the blastula stage. Starting at the neurula stage, after the origin of the mesoderm, the proportion of dividing cells progressively declines in the somitic mesoderm and notochord. Other tissues, however, deviate from this pattern. For example, in the mid-neurula, there is a brief, intense burst of mitosis at the anterior end of the neural plate. Also, from the neurula through the early larval stage, all of the ectoderm cells cease dividing and develop cilia that propel the animal through the water; subsequently, in the epidermis of later larvae, mitosis resumes and the proportion of ciliated cells declines as muscular undulation gradually replaces ciliation for swimming. Finally, in the early larvae, there is a terminal arrest of cell division in three cell types that differentiate early to participate in feeding as soon as the mouth opens-namely the ciliated pharyngeal cells that produce the feeding current and the secretory cells of the club-shaped gland and endostyle that export food-trapping mucus into the pharynx. In sum, these stage- and tissue-specific changes in cell proliferation intensity illustrate how the requirements of embryonic and larval natural history can shape developmental programs.  相似文献   

17.
When presumptive ectoderm is treated with high concentrations of activin A, it mainly differentiates into axial mesoderm (notochord, muscle) in Xenopus and into yolk-rich endodermal cells in newt (Cynops pyrrhogaster). Xenopus ectoderm consists of multiple layers, different from the single layer of Cynops ectoderm. This multilayer structure of Xenopus ectoderm may prevent complete treatment of activin A and subsequent whole differentiation into endoderm. In the present study, therefore, Xenopus ectoderm was separated into an outer layer and an inner layer, which were individually treated with a high concentration of activin A (100 ng/mL). Then the differentiation and inductive activity of these ectodermal cells were examined in explantation and transplantation experiments. In isolation culture, ectoderm treated with activin A formed endoderm. Ectodermal and mesodermal tissues were seldom found in these explants. The activin-treated ectoderm induced axial mesoderm and neural tissues, and differentiated into endoderm when it was sandwiched between two sheets of ectoderm or was transplanted into the ventral marginal zone of other blastulae. These findings suggest that Xenopus ectoderm treated with a high concentration of activin A forms endoderm and mimics the properties of the organizer as in Cynops.  相似文献   

18.
The Xenopus laevis gene tumorhead (TH) is a regulator of cell proliferation of the ectodermal germ layer during embryonic development. TH overexpression results in increased cell proliferation within the developing ectoderm, causing an expansion of the neural plate. Conversely, loss of TH function results in inhibition of proliferation of ectodermal cells. Embryos with altered levels of TH protein are unable to express neural differentiation markers, indicating that the effect of TH in proliferation is linked with differentiation in the nervous system. To date, the molecular mechanism by which TH affects cell proliferation during embryogenesis is unknown. We have utilized the yeast two-hybrid system to identify protein partners of TH that could lead us to define the mechanism or pathway through which TH functions. Using this assay we have identified a new variant of TH designated TH-B, as a potential protein partner of the original TH, now referred to as TH-A. The sequence for TH-B was found to be 85% identical at the amino acid level to the TH-A sequence. Further characterization of the TH-B variant using RT-PCR indicates that it is expressed ubiquitously throughout development from early cleavage stages until at least the tadpole stage. TH-B association with TH-A was confirmed in co-immnoprecipitation studies in Xenopus, indicating that the two variants may function as an oligomer in vivo. These studies reveal the presence of an isoform of TH that may possess novel functional capabilities.  相似文献   

19.
20.
The tetraspanin family of four-pass transmembrane proteins has been implicated in fundamental biological processes, including cell adhesion, migration, and proliferation. Tetraspanins interact with various transmembrane proteins, establishing a network of large multimolecular complexes that allows specific lateral secondary interactions. Here we report the identification and functional characterization of Xenopus Tetraspanin-1 (xTspan-1). At gastrula and neurula, xTspan-1 is expressed in the dorsal ectoderm and neural plate, respectively, and in the hatching gland, cement gland, and posterior neural tube at tailbud stages. The expression of xTspan-1 in the early embryo is negatively regulated by bone morphogenetic protein (BMP) and stimulated by Notch signals. Microinjection of xTspan-1 mRNA interfered with gastrulation movements and reduced ectodermal cell adhesion in a cadherin-dependent manner. Morpholino knock-down of endogenous xTspan-1 protein revealed a requirement of xTspan-1 for gastrulation movements and primary neurogenesis. Our data suggest that xTspan-1 could act as a molecular link between BMP signalling and the regulation of cellular interactions that are required for gastrulation movements and neural differentiation in the early Xenopus embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号