首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventy-one methionineless and cysteineless auxotrophs of Pseudomonas aeruginosa were placed into nine groups on the basis of their growth on methionine precursors and the cross-feeding response. Transduction experiments with bacteriophage F116 indicated the presence of four linkage groups among the methionineless mutants and at least three among the cysteineless mutants. These studies suggested that the biosynthesis of methionine in P. aeruginosa is similar to that described in other microorganisms, although none of the mutants lacking the ability to methylate homocysteine grew with vitamin B(12) or S-adenosylmethionine.  相似文献   

2.
Transduction among Pseudomonas aeruginosa strains was observed in continuous cultures operated under environmentally relevant generation times, cell densities, and phage-to-bacterium ratios, suggesting its importance as a natural mechanism of gene transfer. Transduction was quantified by the transfer of the Tra(sup-) Mob(sup-) plasmid Rms149 from a plasmid-bearing strain to an F116 lysogen that served as both the recipient and source of transducing phages. In control experiments in which transduction was prevented, there was a reduction in the phenotype of the mock transductant over time. However, in experiments in which transduction was permitted, the proportion of transductants in the population increased over time. These data suggest that transduction can maintain a phenotype for an extended period of time in a population from which it would otherwise be lost. Changes in the numbers of transductants were analyzed by a two-part mathematical model, which consisted of terms for the selection of the transductant's phenotype and for the formation of new transductants. Transduction rates ranged from 10(sup-9) to 10(sup-6) per total viable cell count per ml per generation and increased with both the recipient concentration and the phage-to-bacterium ratio. These observations indicate an increased opportunity for transduction to occur when the interacting components are in greater abundance.  相似文献   

3.
Abstract Gene transfer among microorganisms has been well demonstrated in laboratory microcosms and in situ, under non-limiting nutrient conditions. The literature contains conflicting opinions, however, as to whether such processes could occur in the absence of nutrients. This review summarises the evidence for the occurrence of gene transfer by conjugation, transformation and transduction among non-growing bacteria in nutrient depleted environments. Conjugation by selftransmissible, or by non-selftransmissible but mobilisable, plasmids has been shown to occur among environmental isolates of Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa and marine Vibrio strains. Transduction and transformation have been demonstrated in isolates of P. aeruginosa and marine Vibrio strains, respectively. It is possible that the mechanisms of these processes may be different in non-growing cells in nutrient depleted conditions, compared to those occurring in cells growing in rich media.  相似文献   

4.
Transduction of Pseudomonas aeruginosa streptomycin resistance by a generalized transducing phage, F116, was shown to occur during a 10-day incubation in a flow-through environmental test chamber suspended in a freshwater reservoir. Mean F116 transduction frequencies ranged from 1.4 X 10(-5) to 8.3 X 10(-2) transductants per recipient during the in situ incubation. These transduction frequencies were comparable to transduction frequencies determined in preliminary laboratory transduction experiments. The results demonstrate the potential for naturally occurring transduction in aquatic environments and concurrent environmental and ecological ramifications.  相似文献   

5.
Transduction of Pseudomonas aeruginosa streptomycin resistance by a generalized transducing phage, F116, was shown to occur during a 10-day incubation in a flow-through environmental test chamber suspended in a freshwater reservoir. Mean F116 transduction frequencies ranged from 1.4 X 10(-5) to 8.3 X 10(-2) transductants per recipient during the in situ incubation. These transduction frequencies were comparable to transduction frequencies determined in preliminary laboratory transduction experiments. The results demonstrate the potential for naturally occurring transduction in aquatic environments and concurrent environmental and ecological ramifications.  相似文献   

6.
Conjugal gene transfer among bacteria in the residuesphere (area between decaying plant material and soil) of leaves of barley straw was studied. The residuesphere was shown to be a hot-spot for conjugal gene transfer compared to conjugation in sterile sand and non-sterile bulk soil. Impact of fungal colonisation of the residuesphere on bacterial colonisation and conjugation was also investigated. The inhibition of fungal colonisation, due to the application of an eukaryotic inhibitor, increased bacterial colonisation of the residuesphere in soil microcosms compared to non-treated leaves. This treatment also had a transient, positive effect on conjugation. Bacterial conjugation in the residuesphere of leaves subjected to 17 days of fungal colonisation was significantly lower than in the residuesphere of non-colonised leaves. Fungal biomass, as measured by chitinase activity, was inversely related to the conjugation efficiency.  相似文献   

7.
Mutants with insertion mutations in the Pseudomonas aeruginosa protein F (oprF) gene were created in vivo by Tn1 mutagenesis of the cloned gene in Escherichia coli and in vitro by insertion of the streptomycin resistance-encoding omega fragment into the cloned gene, followed by transfer of the mutated protein F gene back to P. aeruginosa. Homologous recombination into the P. aeruginosa chromosome was driven by a bacteriophage F116L transduction method in the oprF::Tn1 mutants or Tn5-instability in the oprF::omega mutants. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting demonstrated that the resultant oprF insertion mutants had lost protein F, whereas restriction digestion and Southern blotting experiments proved that the mutants contained a single chromosomal oprF gene with either Tn1 or omega inserted into it. It has been proposed that protein F has a role in antibiotic uptake in P. aeruginosa. Measurement of antibiotic resistance levels showed small to marginal increases in resistance, compared with that of the parent P. aeruginosa strain, to a variety of beta-lactam antibiotics. Protein F-deficient mutants had altered barrier properties as revealed by a three- to fivefold increase in the uptake of the hydrophobic fluorescent probe 1-N-phenylnaphthylamine.  相似文献   

8.
9.
Genetic exchange in the environment   总被引:6,自引:0,他引:6  
Summary Reports made over the past few years leave little doubt that horizontal gene transfer among bacteria can and does occur in the environment. The significance of these events in the dissemination of recombinant molecules is not clear and more research is required to fully appreciate the impact of genetic exchange on their stability and survival. Based on the available data it is fair to say that horizontal gene transfer may play as important a role in transmission of recombinant sequences as does the survival and persistence of genetically engineered microorganisms.  相似文献   

10.
Over the past two decades the potential for the exchange of bacterial genes in natural environments through transduction (bacteriophage-mediated gene transfer) has been well established. Studies carried out by various laboratories throughout the world have demonstrated that both chromosomal and plasmid DNA can be successfully transduced in natural environments ranging from sewer plants to rivers and lakes. Transduction has been shown to take place in the gills of oysters and the kidneys of mice. Model studies have demonstrated the ability of transduction to maintain genetic material in bacterial gene pools that would otherwise be lost because of negative fitness. Thus, transduction may affect the course of bacterial evolution. Identification of natural transduction has led to the investigation of the dynamics of bacteriophage host interactions in natural aquatic environments and to the exploration of various environmental factors that affect virus-host interactions. Two important environmental factors which affect virus-host interactions are the metabolic state of the host and the exposure of the host to DNA-damaging stresses such as solar UV light. Recent researches on these two areas of virus-host relationships are reviewed.  相似文献   

11.
The temperate bacteriophage SM is not serologically related to the known transducing phages F116, G101, B3 of Pseudomonas aeruginosa. The strains with auxotrophic mutations within the wide ranges of the genetic map of P. aeruginosa strain PAO1 were used for studying the transducing activity of the SM phage. All of the 7 bacterial markers tested are transduced with SM phage grown on a prototrophic donor strain. The frequency of transduction of separate bacterial markers using the wild type SM phage is 2.3 to 4.6 X 10(-8). Linked ilv202+ - met28+ markers are cotransduced with SM phage at a frequency of about 1.5%.  相似文献   

12.
Molecular genetics of obligate anaerobes from the rumen   总被引:6,自引:0,他引:6  
Abstract The rumen is inhabited by a highly specialised microflora consisting of obligately anaerobic bacteria, fungi and protozoa. Rumen bacteria belong to many different phylogenetic groupings and many species exhibit a high degree of rRNA gene sequence diversity, whereas the rumen fungi are monophyletic. At least 21 genes concerned with the degradation and utilisation of plant cell wall polysaccharides, from five species of rumen bacteria and from rumen fungi, have been isolated and sequenced. In general, the catalytic domains of the encoded enzymes belong to enzyme families identified among non-rumen microorganisms, but some show unusual organisation, consisting of multiple catalytic domains. Several bacterial species have been used as recipients for gene transfer by electrotransformation or by conjugation, allowing development of methods for genetic analysis. The rumen is also considered as a potential site for natural gene transfer.  相似文献   

13.
The existence of differential horizontal gene transfer may be assessed by comparing the phylogenetic trees derived from two different genes. We use this concept to estimate quantitatively the amount of plasmid exchange that has occurred in a bacterial population. By means of computer simulations we studied the effect of gene transfer on the topological distortion between two phylogenetic trees: one obtained from an euchromosomal gene and another from a plasmid-borne sequence, which may be subjected to horizontal transfer. The basic assumptions of our simulations were (a) that plasmid exchange had occurred recently (after the last population split); and (b) that either the amount of chromosomal horizontal exchange was negligible or that it was only a fraction of the amount of plasmid exchange in which case we will be estimating relative amounts of plasmid transfer. We found that the topological difference between two such trees is a function of the number of plasmid exchange events that have occurred. It can be explained by a logistic model that relates the average distortion index between two trees (dT) to the number of transfer events (x). The behavior remains the same under different conditions that were tested (symmetry of the topology, number of taxa in the tree, effect of reconstruction errors, mutation after plasmid transfer). We have also tried our method on empirical data from the literature and estimated the amount of gene transfer that may have occurred among Sym plasmids in agricultural field populations of Rhizobium leguminosarum biovar phaseoli. We found that between 15.77 to 29.98% of all genetic types in these populations have been either the source or the target of a plasmid transfer event. When the comparisons were made among trees derived exclusively from plasmid probes this value dropped to 2.00%. Phylogenetic trees derived from symbiotic and nonsymbiotic sequences were also used to infer the number of gene transfer events among 11 isolates from R. galegae. The estimated number of transfer events of symbiotic sequences was 10.515 (although we do not know out of how many genetic types). We concluded that intraspecific transfer of symbiotic sequences is widespread in these two species of the genus Rhizobium.  相似文献   

14.
水平基因转移是不同于垂直基因转移的遗传物质的交流方式.在污染环境这一特异生态环境中,降解基因的水平转移有着独特的功能与作用.研究环境中污染物降解基因在微生物间的水平转移,更深入地了解微生物种群适应污染环境的机理,对于评价污染物的环境毒理、生物可降解性以及污染环境的可修复潜力具有重要参考价值.在污染物生物修复实践中,可以通过调控降解基因的水平转移,增强污染环境中微生物的降解能力,更有效地发挥生物修复作用.文章将对环境中细菌间基因交流的机制,污染物降解基因的水平转移对微生物适应污染环境的机理、水平基因转移对代谢途径的进化及其对污染物生物修复作用的影响等方面的研究进展做一综述.  相似文献   

15.
Universal barrier to lateral spread of specific genes among microorganisms   总被引:6,自引:0,他引:6  
A genetic circuit to suppress the lateral spread of cloned genes from recombinant to indigenous microorganisms in the environment has been developed. It is based on the endonucleolytic activity of the bacterial toxin colicin E3, which has a distinct target at the 3 end of the 16S ribosomal RNA; this sequence is conserved in virtually all prokaryotic and many eukaryotic genera. Cleavage at this sequence separates the mRNA binding sites from the remainder of the 16S rRNA, thereby inhibiting protein synthesis. While host bacteria carrying the genes for both colicin production and colicin immunity are perfectly viable, lateral transfer of the E3 gene to non-immune reciptents results in killing of such recipients. This genetic circuit decreases operational transfer frequencies of cloned genes linked to the E3 gene among a variety of bacterial genera by four to five orders of magnitude, in combination with transposon cloning vectors, the circuit is predicted to reduce the rate of lateral spread of specific genes to ecologically insignificant levels. This system therefore represents a useful tool both to explore the evolutionary and ecological consequences of experimentally reducing lateral gene spread among microorganisms, and to increase the ecological predictability of novel recombinant microorganisms.  相似文献   

16.
P. G. Wolf  P. S. Soltis 《Genetics》1992,130(3):639-647
Interpopulational gene flow within a species can reduce population differentiation due to genetic drift, whereas genetic exchange among taxa can impede speciation. We used allozyme data to estimate gene flow within and among geographic races and species of perennial herbs in the Ipomopsis aggregata complex (Polemoniaceae). Estimates of interpopulational gene flow within taxa from two methods (F statistics and private alleles) were correlated with one another. Gene flow among populations within each geographic race (subspecies) of I. aggregata was relatively high (Nm greater than approximately 1.0). Gene flow was also high among populations of I. arizonica and among four northern populations of I. tenuituba. However, gene flow was low (Nm less than 1.0) for I. tenuituba when a population representing subsp. macrosiphon was included. This is consistent with previous findings that subsp. macrosiphon has had an independent origin and is reproductively, as well as geographically, isolated. A recently developed model, based on hierarchical F statistics, was employed to estimate genetic exchange among taxa. Gene flow estimates were generally high among races of I. aggregata (dNmrace greater than 1.0) but were low among subspecies of I. tenuituba (dNmrace less than 1.0). Consistent with morphological evidence, estimates of interspecific gene flow were moderate between I. aggregata and I. tenuituba, which hybridize in several areas. However, contrary to morphological evidence, we estimated relatively high levels of interspecific gene flow involving I. arizonica. Our results suggest that I. arizonica has hybridized with other species without the transfer of morphological traits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Horizontal gene transfer greatly facilitates rapid genetic adaptation of bacteria to shifts in environmental conditions and colonization of new niches by allowing one-step acquisition of novel functions. Conjugation is a major mechanism of horizontal gene transfer mediated by conjugative plasmids and integrating conjugative elements (ICEs). While in most bacterial conjugative systems DNA translocation requires the assembly of a complex type IV secretion system (T4SS), in Actinobacteria a single DNA FtsK/SpoIIIE-like translocation protein is required. To date, the role and diversity of ICEs in Actinobacteria have received little attention. Putative ICEs were searched for in 275 genomes of Actinobacteria using HMM-profiles of proteins involved in ICE maintenance and transfer. These exhaustive analyses revealed 144 putative FtsK/SpoIIIE-type ICEs and 17 putative T4SS-type ICEs. Grouping of the ICEs based on the phylogenetic analyses of maintenance and transfer proteins revealed extensive exchanges between different sub-families of ICEs. 17 ICEs were found in Actinobacteria from the genus Frankia, globally important nitrogen-fixing microorganisms that establish root nodule symbioses with actinorhizal plants. Structural analysis of ICEs from Frankia revealed their unexpected diversity and a vast array of predicted adaptive functions. Frankia ICEs were found to excise by site-specific recombination from their host's chromosome in vitro and in planta suggesting that they are functional mobile elements whether Frankiae live as soil saprophytes or plant endosymbionts. Phylogenetic analyses of proteins involved in ICEs maintenance and transfer suggests that active exchange between ICEs cargo-borne and chromosomal genes took place within the Actinomycetales order. Functionality of Frankia ICEs in vitro as well as in planta lets us anticipate that conjugation and ICEs could allow the development of genetic manipulation tools for this challenging microorganism and for many other Actinobacteria.  相似文献   

18.
E. F. Boyd  C. W. Hill  S. M. Rich    D. L. Hartl 《Genetics》1996,143(3):1091-1100
The distribution of plasmids related to the fertility factor F was examined in the ECOR reference collection of Escherichia coli. Probes specific for four F-related genes were isolated and used to survey the collection by DNA hybridization. To estimate the genetic diversity of genes in F-like plasmids, DNA sequences were obtained for four plasmid genes. The phylogenetic relationships among the plasmids in the ECOR strains is very different from that of the strains themselves. This finding supports the view that plasmid transfer has been frequent within and between the major groups of ECOR. Furthermore, the sequences indicate that recombination between genes in plasmids takes place at a considerably higher frequency than that observed for chromosomal genes. The plasmid genes, and by inference the plasmids themselves, are mosaic in structure with different regions acquired from different sources. Comparison of gene sequences from a variety of naturally occurring plasmids suggested a plausible donor of some of the recombinant regions as well as implicating a chi site in the mechanism of genetic exchange. The relatively high rate of recombination in F-plasmid genes suggests that conjugational gene transfer may play a greater role in bacterial population structure than previously appreciated.  相似文献   

19.
Leaf microbiomes play crucial roles in plant health, making it important to understand the origins and functional relevance of their diversity. High strain-level leaf bacterial genetic diversity is known to be relevant for interactions with hosts, but little is known about its relevance for interactions with the multitude of diverse co-colonizing microorganisms. In leaves, nutrients like amino acids are major regulators of microbial growth and activity. Using metabolomics of leaf apoplast fluid, we found that different species of the plant genus Flaveria considerably differ in the concentrations of high-cost amino acids. We investigated how these differences affect bacterial community diversity and assembly by enriching leaf bacteria in vitro with only sucrose or sucrose + amino acids as possible carbon sources. Enrichments from F. robusta were dominated by Pantoea sp. and Pseudomonas sp., regardless of carbon source. The latter was unable to grow on sucrose alone but persisted in the sucrose-only enrichment thanks to exchange of diverse metabolites from Pantoea sp. Individual Pseudomonas strains in the enrichments had high genetic similarity but still displayed clear niche partitioning, enabling distinct strains to cross-feed in parallel. Pantoea strains were also closely related, but individuals enriched from F. trinervia fed Pseudomonas more poorly than those from F. robusta. This can be explained in part by the plant environment, since some cross-feeding interactions were selected for, when experimentally evolved in a poor (sucrose-only) environment but selected against in a rich (sucrose + amino acids) one. Together, our work shows that leaf bacterial diversity is functionally relevant in cross-feeding interactions and strongly suggests that the leaf resource environment can shape these interactions and thereby indirectly drive bacterial diversity.Subject terms: Microbiome, Plant ecology, Biodiversity, Microbial ecology, Bacterial genomics  相似文献   

20.
基因水平转移可导致细菌不同种属间个体DNA的交换,从而使细菌对环境的适应性增强,是细菌进化的重要途径之一。基因组岛是基因水平转移的重要载体,可移动的基因组岛能够整合到宿主的染色体上,并在特定的条件下切除,进而通过转化、接合或转导等方式转移到新的宿主中。基因组岛具有多种生物学功能,如抗生素抗性、致病性、异源物质降解、重金属抗性等。基因组岛的转移造成可变基因在不同种属细菌间的广泛传播,例如毒力和耐药基因的传播导致了多重耐药细菌的产生,威胁人类健康。基因组岛由整合酶介导转移,同时在转移的过程受到多种不同转录因子的调控。本文对细菌中基因组岛的结构特点、转移和调控机制以及预测等方面进行了综述,并最终阐明基因组岛的转移及其调控机制是遏制基因组岛传播的重要策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号