首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repopulation of the seminiferous epithelium became evident from Day 75 postirradiation onward after doses of 0.5, 1.0, and 2.0 Gy of X rays. Cell counts in cross sections of seminiferous tubules revealed that during this repopulation the numbers of Apale (Ap) spermatogonia, Adark (Ad) spermatogonia, and B spermatogonia increased simultaneously. After 0.5 Gy the number of spermatogonia increased from approximately 10% of the control level at Day 44 to 90% at Day 200. After 1.0 and 2.0 Gy the numbers of spermatogonia increased from less than 5% at Day 44 to 70% at Days 200 and 370. The number of Ad and B spermatogonia, which are considered to be resting and differentiating spermatogonia, respectively, already had increased when the number of proliferating Ap spermatogonia was still very low. This early inactivation and differentiation of a large part of the population of Ap spermatogonia slows down repopulation of the seminiferous epithelium of the primates. By studying repopulating colonies in whole mounts of seminiferous tubules various types of colonies were found. In colonies consisting of only A spermatogonia, 40% of the A spermatogonia were found to be of the Ad type, which indicates that even before the colony had differentiated, 40% of the A spermatogonia were inactivated into Ad. Differentiating colonies were also found in which one or two generations of germ cells were missing. In some of those colonies it was found that the Ap spermatogonia did not form any B spermatogonia during one or two cycles of the seminiferous epithelium, while in other colonies all Ap spermatogonia present had differentiated into B spermatogonia. This indicates that the differentiation of Ap into B spermatogonia is a stochastic process. When after irradiation the density of the spermatogonia in the epithelium was very low, it could be seen that the populations of Ap and Ad spermatogonia are composed of clones of single, paired, and aligned spermatogonia, which are very similar to the clones of undifferentiated spermatogonia in non-primates.  相似文献   

2.
In unirradiated testes large differences were found in the total number of spermatogonia among different monkeys, but the number of spermatogonia in the right and the left testes of the same monkey appeared to be rather similar. During the first 11 days after irradiation with 0.5 to 4.0 Gy of X rays the number of Apale spermatogonia (Ap) decreased to about 13% of the control level, while the number of Adark spermatogonia (Ad) did not change significantly. A significant decrease in the number of Ad spermatogonia was seen at Day 14 together with a significant increase in the number of Ap spermatogonia. It was concluded that the resting Ad spermatogonia are activated into proliferating Ap spermatogonia. After Day 16 the number of both Ap and Ad spermatogonia decreased to low levels. Apparently the new Ap spermatogonia were formed by lethally irradiated Ad spermatogonia and degenerated while attempting to divide. The activation of the Ad spermatogonia was found to take place throughout the cycle of the seminiferous epithelium. Serum FSH, LH, and testosterone levels were measured before and after irradiation. Serum FSH levels already had increased during the first week after irradiation to 160% of the control level. Serum LH levels increased between 18 and 25 days after irradiation. Serum testosterone levels did not change at all. The results found in the rhesus monkey are in line with those found in humans, but due to the presence of Ad spermatogonia they differ from those obtained in non-primates.  相似文献   

3.
The purpose of the present study was to determine whether dark and pale type A spermatogonia (Ad and Ap, respectively) are mitotically active during prepubertal development and whether proliferation of these germ cells during this protracted phase of primate development occurs predominantly during infancy before gonadotropin secretion is arrested. Four neonate (1-2 days of age), four infant (4-5 mo of age), and four juvenile (14-17 mo of age) rhesus monkeys (Macaca mulatta) were castrated 2 h after receiving an i.v. bolus of 5-bromo2'-deoxy-uridine (BrdU, 33 mg/kg body weight). Tissue was fixed in Bouin solution, and 5-microm paraffin sections were cut. Using periodic acid-Schiff reagent/Gill hematoxylin staining, the number per testis of Ad and Ap spermatogonia were determined. BrdU S-phase-labeled nuclei were identified using immunofluorescence. Conservative criteria were employed for classifying cell types, and this resulted in a fraction of A spermatogonia remaining unclassified. Ad, Ap, and the unclassified A spermatogonia each showed an approximately 4-fold increase over the 5-mo period from birth to infancy, and a similar increase was observed over the 10-mo period between infancy and the juvenile stage of development. Both Ad and Ap (and unclassified A spermatogonia) exhibited robust and similar S-phase labeling at the three stages of development. We conclude that the prepubertal expansion of Ad and Ap spermatogonia is achieved by mitotic proliferation that is relatively gonadotropin independent. This conclusion raises the question of the nature of the signal that arrests the cell cycle of Ad in adult testis.  相似文献   

4.
Summary Four different types of spermatogonia were identified in the seminiferous tubules of the Japanese quail: a dark type A (Ad), 2 pale A type (Ap1 and Ap2), and a type B. A model is proposed describing the process of spermatogonial development in the quail. The Ad spermatogonia are considered to be the stem cells. Each divides to produce a new Ad spermatogonium and a Ap1 spermatogonium during Stage IX of the cycle of the seminiferous epithelium. An Ap1 spermatogonium produces two Ap2 spermatogonia during Stage II of the cycle, Ap2 spermatogonia produce four type B spermatogonia during Stage VI of the cycle, and type B spermatogonia produce eight primary spermatocytes during Stage III of the cycle. Consequently, 32 spermatids can result from each division of an Ad spermatogonium. Spermatogonial development in the quail differs from the process described in mammals in that there are fewer mitotic divisions and they are all synchronized with the cycle of the seminiferous epithelium. It is suggested that the fewer mitotic divisions explain why a smaller area of the seminiferous tubule is occupied by a cellular association in the quail than in mammals like the rat, ram and bull. The duration of spermatogenesis from the division of the Ad spermatogonia to sperm release from the seminiferous epithelium was estimated to be 12.77 days.  相似文献   

5.
THE SPERMATOGONIAL STEM CELL POPULATION IN ADULT RATS   总被引:2,自引:0,他引:2  
Radioautographed whole mounted seminiferous tubules from adult rat testes were used to analyse undifferentiated type A spermatogonia at various intervals up to 81 hr following a single injection of 3H-TdR. the data obtained led to the identification of the spermatogonial stem cell and to the formulation of a new model for spermatogonial renewal and differentiation. Undifferentiated type A cells were morphologically alike, but were topographically classified as (1) isolated or (2) paired and aligned. Although labeled isolated A cells were scattered over most stages of the seminiferous epithelium, their proliferative activity varied with the stage; their labeling index was 20-30% in stages I and II, but less than 1% in stages VII and VIII. By tracing the labeled divisions of isolated A spermatogonia in time, it was seen that some daughter cells became separated from one another to form two new isolated cells, while others remained together as paired A spermatogonia. Analysis of two successive waves of labeled mitoses revealed that most paired A spermatogonia continued to proliferate forming four aligned A cells, many of which divided again to produce a chain of eight and so on. the greatest incidence of labeling among paired and aligned A spermatogonia occurred in stages XIII-III. In stage I, where the labeling index was 50%, the calculated proliferative fraction was 1 for these spermatogonia. Between stages II and V, they began to leave mitotic cycle, and during stage V this entire cohort morphologically transformed into A1 spermatogonia. Labeled metaphase curves for undifferentiated A spermatogonia were distinct from any of the curves previously constructed for the six classes of differentiating spermatogonia, especially because of particularly long S and G2 phases in the former. the cell cycle time of paired and aligned A cells was 55 hr, compared to an average of 42 hr for differentiating types A2 to B.  相似文献   

6.
目的阐明性成熟前食蟹猴生精细胞的发育进程。方法分别采集性成熟前不同年龄(0岁、0.5岁、1岁、1.5岁、2岁、2.5岁、3岁、3.5岁、4岁)食蟹猴睾丸,制作石蜡切片,进行HE染色和PAS/H染色。根据生精细胞的染色特性,分析性成熟前食蟹猴生精细胞的发育进程,并对食蟹猴精原干细胞进行初步鉴定。结果 HE染色结果显示,1岁及以下食蟹猴生精上皮上生精细胞仅有精原干细胞(包括Ad、At及Ap型精原细胞),1.5岁食蟹猴生精上皮上开始出现B型精原细胞,3岁食蟹猴生精上皮上出现精母细胞,4岁食蟹猴生精上皮上出现从精原干细胞到精子的所有生殖细胞。PAS/H染色结果显示,1~2.5岁食蟹猴Ad型精原细胞胞质呈PAS阳性,At型精原细胞胞质呈PAS弱阳性,Ap型精原细胞胞质呈PAS阴性;其他生精细胞及支持细胞胞质呈阴性;0.5岁及以下,3岁及以上食蟹猴生精细胞的胞质PAS/H染色特性与前者存在差异。结论本文详细阐述了性成熟前食蟹猴生精细胞随年龄增长的渐次性发育模式,并建立了性成熟前食蟹猴精原干细胞原位鉴定的一种新方法,这些研究结果为食蟹猴精原干细胞的其他相关研究奠定了基础。  相似文献   

7.
The paper describes in detail the cytomorphology of different types of germ cells, the 10 typical cellular associations or stages of the cycle of seminiferous epithelium (CSE), frequency of appearance of these stages, pattern of spermatogonial stem cell renewal and per cent degeneration of various germ cells in R. leschenaulti. Of the 14 steps of spermiogenesis (stained with PAS-haematoxylin) the first 10 were associated with the stages I-X, whereas, the remaining were found in association with one of the first six stages. The frequency of appearance of the various stages ranged from 3.84% (stage V) to 19.84% (stage I). These observations indicate that stage V is of shortest duration and stage I is of the longest duration in the bat. Five types of spermatogonia (A1, A2, A3, In and B) were identified based on their shape, size and nuclear morphology. Type A spermatogonia are oval with a large nucleus containing 1 or 2 nucleoli. The chromatin showed progressive condensation from A1 to A3 so that the latter appeared darkest among all the A type spermatogonia. The In type derived from A3 are smaller but appear darker than A3 due to heterochromatin crusts along the inner border of the nucleus. The B type spermatogonia derived from In are round and possess single nucleolus. The B type spermatogonia divided mitotically before entering meiosis or the actual production of the primary spermatocytes. The various spermatogonia divided mitotically at fixed stages of the cycle giving rise to their next generations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In the Chinese hamster, 17 days, i.e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermatogonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. The following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i.e. newborn stem cells that still have to migrate away, mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

9.
10.
This study aimed to characterize the stages of the seminiferous epithelium cycle by the tubular morphology method, and to determine the number of differentiated spermatogonia generations in the adult white-lipped peccary. Twenty adult white-lipped peccaries, obtained from commercial slaughterhouse, were used. Fragments of the testicular parenchyma were fixed in 3% glutaraldehyde and embedded into a methacrylate resin. The number of germ and Sertoli cells was estimated by the analysis of cell populations in 50 transversal sections of seminiferous tubules in different stages of the cycle. The tubular morphology method allowed the identification of cellular associations characteristic of the eight stages of the seminiferous epithelium cycle in white-lipped peccaries. The results showed the presence of six generations of differentiated spermatogonia in white-lipped peccaries, and that the cell composition of the eight stages of the seminiferous epithelium cycle in this species is very similar to that described for collared peccaries.  相似文献   

11.
Seminiferous tubule involution in elderly men   总被引:3,自引:0,他引:3  
The observation of different types of seminiferous tubules (from tubules with normal spermatogenesis to sclerosed tubules) in aging human testes points to the progressive stages of tubular involution in elderly men. The tubules with hypospermatogonesis (reduced number of elongated spermatids) show numerous morphological anomalies in the germ cells, including multinucleated cells. Abnormal germ cells degenerate, causing Steroli cell vacuolation. These vacuoles correspond to dilations of the extracellular spaces resulting from the premature exfoliation of germ cells. Degenerating cells that are phagocytized by Sertoli cells lead to an accumulation of lipid droplets in the Sertoli cell cytoplasm. The loss of germ cells begins with spermatids, but progressively affects the preceding germ cell types, and tubules with maturation arrested at the level of spermatocytes or spermatogonia are observed. Simultaneously, an enlargement of the tunica propria occurs. This leads to the formation of sclerosed tubules, some of which display a low seminiferous epithelium consisting of a few cells--including lipid-loaded Sertoli cells and both Ap and Ad spermatogonia--and others, showing complete sclerosis, are devoid of seminiferous epithelium. The development of tubular involution is similar to that reported after experimental ischemia, which also seems to cause nonspecific effects on the testis such as multinucleate cells, vacuoles, and increased lipids in Sertoli cells.  相似文献   

12.
Do spermatogonial stem cells have a circadian rhythm?   总被引:1,自引:0,他引:1  
Mitotic index was determined in whole mounts of segments of seminiferous tubules of (101 X C3Hf)F1 male mice at 3 hr intervals from 18.00 to 06.00 hours, and at hourly intervals from 08.00 to 16.00 hours. The highest frequency of metaphase-anaphase figures occurred at 10.00 and 11.00 hours, but was not significantly higher than for other times. Injection of 25 mu Ci 3H-TdR per mouse, followed 24 hr later by exposure to 300 rad X-rays and killing 207 hr after labelling was used to test for circadian rhythm in DNA synthetic activity of the long-cycling As spermatogonia. No significant effect of time of day was observed. Likewise, the number of undifferentiated spermatogonia scored 183 hr after 300 rad showed no effect of time of day. The testis therefore appears to have no circadian rhythm in mitotic activity. Stage of the cycle of the seminiferous epithelium, however, showed a significant effect on mitotic index of As spermatogonia and on DNA synthetic activity of undifferentiated spermatogonia. These data are compared with those for other organisms and tissues in respect to which properties of stem cells are general for all organisms and tissues and which are specific for spermatogonia.  相似文献   

13.
Effects of highly purified antiserum (AS) to follicle stimulating hormone (FSH) on testicular function was studied in immature rats. Treatment with FSHAS for 10 days, from 25-34, decreased weights of the testis (p .001) and increased weights of the epididymis (p .05). Numbers of the cell types in the seminiferous epithelium, particularly Type A spermatogonia pachytene spermatocytes and spermatids, were markedly reduced, possibly due to: 1) decreased division of the initial stem cells, 2) impairment of division of Type B spermatogonia and their transformation to pachytene spermatocytes, and 3) desquamation and degeneration of pachytene spermatocytes and spermatids. FSHAS also affected the sertoli cell function which was reflected in the decreased binding of androgens to supernatant fraction of the testis and epididymides. Treatment with luteinizing hormone-AS for 5 days did not affect testicular function but the binding of androgens to the supernatants of the caput and cauda epididymides and ventral prostate was significantly reduced (p .001). These data indicate that FSH is necessary for the maintenance of the cellular integrity of the seminiferous epithelium during the completion of the 1st wave of spermatogenesis.  相似文献   

14.
15.
The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At that time, only Sertoli cells and A spermatogonia were present in the seminiferous epithelium. These spermatogonia were topographically arranged as single and paired cells and as clones of 4, 8 and more cells. A few mitoses of single, paired, and clones of 4 A spermatogonia were found, which were randomly distributed over the seminiferous epithelium. When vitamin A-deficient mice were treated with retinol-acetate combined with a normal vitamin A-containing diet, spermatogenesis restarted again synchronously. Only a few successive stages of the cycle of the seminiferous epithelium were present up to at least 43 days after vitamin A replacement. After 20 days, 98.3% of the seminiferous tubules were synchronized, showing pachytene spermatocytes as the most advanced cell type, mostly being in epithelium stages IX-XII. After 35 and 43 days, spermatogenesis was complete in 99.6% of the tubular cross sections, and most tubular cross sections were in stages IV-VII of the cycle of the seminiferous epithelium. The degree of synchronization was comparable or even higher than found in rats. The rate of development of the spermatogenic cells between 8 and 43 days after vitamin A replacement seemed to be similar to that in normal mice. Assuming that the rate of development of the spermatogenic cells is also normal during the first 8 days after vitamin A replacement, it can be deduced that the preleptotene spermatocytes, present after 8 days, were A spermatogonia in the beginning of stage VIII at the moment of vitamin A replacement. These results indicate that the mouse can be used as a model to study epithelial stage-dependent processes in the testis.  相似文献   

16.
ABSTRACT In the Chinese hamster, 17 days, i. e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermato-gonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. the following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i. e. newborn stem cells that still have to migrate away. mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

17.
18.
Isolation and transplantation of spermatogonia in sheep   总被引:1,自引:0,他引:1  
Studies in rodents show that spermatogonial transplantation is an excellent new tool for studying spermatogenesis and for preservation and dissemination of genetics. The aim of this study was to adapt the technique to rams. Two issues were addressed: purification of stem cell spermatogonia, and efficient injection of donor spermatogonia into the seminiferous tubules of rams. We compared differential plating and Percoll gradient methods for purifying donor spermatogonia from ram lamb testes. Spermatogonia were identified with an antibody against PGP 9.5, a ubiquitin C-terminal hydrolase. Both purity and total number of spermatogonia recovered were higher after purification by Percoll gradient than by differential plating. Four approaches for injecting cells into the seminiferous tubules of ram testes were compared ex vivo: insertion of a needle into the extra-testicular rete testis after reflection of the head of the epididymis ('surgical' approach), and ultrasound-guided insertion of a needle into the extra-testicular rete, and the proximal and distal parts of the intra-testicular rete testis. 'Surgical' and ultrasound-guided approaches into the extra-testicular rete resulted in highest success rates and best filling of the seminiferous tubules. Finally, the ultrasound guided approach into the extra-testicular rete testis was validated in vivo by transplanting purified spermatogonia previously labeled with a fluorescent molecule (CFDA-SE). In seven of eight testes injected, donor cells were identified within the seminiferous epithelium for up to 2wk after transplantation, indicating the integration of donor cells.  相似文献   

19.
We investigated stem cell renewal and differentiation in 10- and 15-days-old spermatogonial clones developing in mouse seminiferous epithelium after an extremely large cell loss, inflicted by high doses of the alkylating agent Myleran. The spermatogonial clones arise from cells that resemble the Ais spermatogonia but have a larger nuclear diameter. In spite of their mitotic activity these 'repopulating stem cells' lie mainly isolated or in pairs. This explained by migration and differentiation. Migration appeared to occur at random in all directions along the basement membrane of the seminiferous tubule. After one or more divisions of the stem cells, a second type of cell appears, which is called the 'differentiating spermatogomium'. The time elapsing before this type of cell appears, depends on the dose of Myleran: the larger the dose the later differentiation starts. A relation could be demonstrated between the stage of the cycle of the seminiferous epithelium and the start of differentiation. Differentiating cells were found isolated or in groups of two, four, eight or sixteen cells. Hence we concluded that at least up to their fourth division differentiating cells divide synchronously without degenerations. Three types of division of repopulating stem cells were distinguished, producing (1) two repopulating stem cells, (2) one repopulating stem cell and one cell starting spermatogonial differentiation, or (3) two differentiating cells. Type 1 divisions were found most frequently.  相似文献   

20.
Unlike mammals, there is little fundamental information about spermatogenesis in birds. This study was undertaken to clarify the morphology, histochemistry, and lectin affinity of the seminiferous epithelial cells and Leydig cells in pre-pubertal (8- to 15-week old) and adult (40- to 44-week old) domestic turkeys. In adult turkeys, three types of spermatogonia were defined based on their chromatin distribution and nuclear morphology: the dark type A (A(d)); the pale type A (A(p)); and the type B. The A(d) is the least numerous and least conspicuous and consequently difficult to locate. Based on its spatial distribution and overall morphology, type A(d) spermatogonia were postulated to be the spermatogonia stem cells in the turkey. Antibodies to c-kit were localized to spermatogonia in the pre-pubertal and to a lesser extent in adult males. Peanut agglutinin (PNA) was specific for spermatocytes in the pre-pubertal males and spermatogonia and early spermatocytes in adult males. Wheat-germ agglutinin (WGA) highlighted Sertoli cells in both age groups. Bandeiraea simplicifolia I, soybean agglutinin, and winged-pea agglutinin staining were limited to the wall of the seminiferous tubule and some extra-tubular cell types. Concanavalin A staining was diffuse and not cell-specific and, therefore, could not be used to selectively identify a particular cell type. It was concluded that WGA and PNA could aid in identifying specific cell types in the seminiferous epithelium of testis from pre-pubertal and mature turkeys. Only Leydig cells were alkaline phosphatase reactive in the mature turkey testes. The information from this study is being used to adapt techniques for the isolation and partial purification developed for mammalian spermatogonia to avian spermatogonia and other specific cell types in the testes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号