首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distinct intracellular pathways are involved in regulated and constitutive protein secretion from neuronal and endocrine cells, yet the peptide signals and molecular mechanisms responsible for targeting and retention of soluble proteins in secretory granules are incompletely understood. By using confocal microscopy and subcellular fractionation, we examined trafficking of the neuronal and endocrine peptide precursor VGF that is stored in large dense core vesicles and undergoes regulated secretion. VGF cofractionated with secretory vesicle membranes but was not detected in detergent-resistant lipid rafts. Deletional analysis using epitope-tagged VGF suggested that the C-terminal 73-amino acid fragment of VGF, containing two predicted alpha-helical loops and four potential prohormone convertase (PC) cleavage sites, was necessary and sufficient with an N-terminal signal peptide-containing domain, for large dense core vesicle sorting and regulated secretion from PC12 and INS-1 cells. Further transfection analysis identified the sorting sequence as a compact C-terminal alpha-helix and embedded 564RRR566 PC cleavage site; mutation of the 564RRR566 PC site in VGF-(1-65): GFP:VGF-(545-617) blocked regulated secretion, whereas disruption of the alpha-helix had no effect. Mutation of the adjacent 567HFHH570 motif, a charged region that might enhance PC cleavage in acidic environments, also blocked regulated release. Finally, inhibition of PC cleavage in PC12 cells using the membrane-permeable synthetic peptide chloromethyl ketone (decanoyl-RVKR-CMK) blocked regulated secretion of VGF. Our studies define a critical RRR-containing C-terminal domain that targets VGF into the regulated pathway in neuronal PC12 and endocrine INS-1 cells, providing additional support for the proposed role that PCs and their cleavage sites play in regulated peptide secretion.  相似文献   

2.
P-selectin (CD62), formerly called GMP-140 or PADGEM, is a membrane protein located in secretory storage granules of platelets and endothelial cells. To study the mechanisms responsible for the targeting of P-selectin to storage granules, we transfected its cDNA into COS-7 and CHO-K1 cells, which lack a regulated exocytic pathway, or into AtT20 cells, which are capable of regulated secretion. P-selectin was expressed on the plasma membrane of COS-7 and CHO-K1 cells but was concentrated in storage granules of AtT20 cells. Immunogold electron microscopy indicated that the electron-dense granules containing P-selectin in AtT20 cells also stored the endogenous soluble hormone ACTH. Activation of AtT20 cells with 8-Br-cAMP increased the surface expression of P-selectin, consistent with agonist-induced fusion of granule membranes with the plasma membrane. Deletion of the last 23 amino acids of the 35-residue cytoplasmic domain resulted in delivery of P-selectin to the plasma membrane of AtT20 cells. Replacement of the cytoplasmic tail of tissue factor, a plasma membrane protein, with the cytoplasmic domain of P-selectin redirected the chimeric molecule to granules. We conclude that the cytoplasmic domain of P-selectin is both necessary and sufficient for sorting of membrane proteins into the regulated pathway of secretion.  相似文献   

3.
Membrane carboxypeptidase E (CPE) is a sorting receptor for targeting prohormones, such as pro-opiomelanocortin, to the regulated secretory pathway in endocrine cells. Its membrane association is necessary for it to bind a prohormone sorting signal at the trans-Golgi network (TGN) to facilitate targeting. In this study, we examined the lipid interaction of CPE in bovine pituitary secretory granule membranes, which are derived from the TGN. We show that CPE is associated with detergent-resistant lipid domains, or rafts, within secretory granule membranes. Lipid analysis revealed that these rafts are enriched in glycosphingolipids and cholesterol. Pulse-chase and subcellular fractionation experiments in AtT-20 cells show that the association of CPE with membrane rafts occurred only after it reached the Golgi. Cholesterol depletion resulted in dissociation of CPE from secretory granule membranes and decreased the binding of prohormones to membranes. In vivo cholesterol depletion using lovastatin resulted in the lack of sorting of CPE and its cargo to the regulated secretory pathway. We propose that the sorting receptor function of CPE necessitates its interaction with glycosphingolipid-cholesterol rafts at the TGN, thereby anchoring it in position to bind to its prohormone cargo.  相似文献   

4.
Targeting proteins to their correct cellular location is crucial for their biological function. In neuroendocrine cells, proteins can be secreted by either the constitutive or the regulated secretory pathways but the mechanism(s) whereby proteins are sorted into either pathway is unclear. In this review we discuss the possibility that sorting is either an active process occurring at the level of the trans-Golgi network, or that sorting occurs passively in the immature granules, The possible involvement of protein-lipid interactions in the sorting process is also raised.  相似文献   

5.
The regulated release of proteins depends on their inclusion within large dense-core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network (TGN), but the mechanism for protein sorting to this regulated secretory pathway (RSP) and the cytosolic machinery involved in this process have remained poorly understood. Using an RNA interference screen in Drosophila melanogaster S2 cells, we now identify a small number of genes, including several subunits of the heterotetrameric adaptor protein AP-3, which are required for sorting to the RSP. In mammalian neuroendocrine cells, loss of AP-3 dysregulates exocytosis due to a primary defect in LDCV formation. Previous work implicated AP-3 in the endocytic pathway, but we find that AP-3 promotes sorting to the RSP within the biosynthetic pathway at the level of the TGN. Although vesicles with a dense core still form in the absence of AP-3, they contain substantially less synaptotagmin 1, indicating that AP-3 concentrates the proteins required for regulated exocytosis.  相似文献   

6.
The production of pigment by melanocytic cells of the skin involves a series of enzymatic reactions that take place in specialized organelles called melanosomes. Melan-A/MART-1 is a melanocytic transmembrane protein with no enzymatic activity that accumulates in vesicles at the trans side of the Golgi and in melanosomes. We show here that, in melanoma cells, Melan-A associates with two homologous to E6-AP C-terminus (HECT)-E3 ubiquitin ligases, NEDD4 and Itch, and is ubiquitylated. Both NEDD4 and Itch participate in the degradation of Melan-A. A mutant Melan-A lacking ubiquitin-acceptor residues displays increased half-life and, in pigmented cells, accumulates in melanosomes. These results suggest that ubiquitylation regulates the lysosomal sorting and degradation of Melan-A/MART-1 from melanosomes in melanocytic cells.  相似文献   

7.
In Saccharomyces cerevisiae, the phosphate signal transduction pathway (PHO pathway) is known to regulate the expression of several phosphate-responsive genes, such as PHO5 and PHO84. However, the fundamental issue of whether cells sense intracellular or extracellular phosphate remains unresolved. To address this issue, we have directly measured intracellular phosphate concentrations by (31)P NMR spectroscopy. We find that PHO5 expression is strongly correlated with the levels of both intracellular orthophosphate and intracellular polyphosphate and that the signaling defect in the Deltapho84 strain is likely to result from insufficient intracellular phosphate caused by a defect in phosphate uptake. Furthermore, the Deltaphm1Deltaphm2, Deltaphm3, and Deltaphm4 strains, which lack intracellular polyphosphate, have higher intracellular orthophosphate levels and lower expression of PHO5 than the wild-type strain. By contrast, the Deltaphm5 strain, which has lower intracellular orthophosphate and higher polyphosphate levels than the wild-type strain, shows repressed expression of PHO5, similar to the wild-type strain. These observations suggest that PHO5 expression is under the regulation of intracellular orthophosphate, although orthophosphate is not the sole signaling molecule. Moreover, the disruption of PHM3, PHM4, or of both PHM1 and PHM2 in the Deltapho84 strain suppresses, although not completely, the PHO5 constitutive phenotype by increasing intracellular orthophosphate, suggesting that Pho84p affects phosphate signaling largely by functioning as a transporter.  相似文献   

8.
The mechanisms by which prohormone precursors are sorted to the regulated secretory pathway in neuroendocrine cells remain poorly understood. Here, we investigated the presence of sorting signal(s) in proneurotensin/neuromedin N. The precursor sequence starts with a long N-terminal domain followed by a Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin)-Lys-Arg- sequence and a short C-terminal tail. An additional Arg-Arg dibasic is contained within the neurotensin sequence. Mutated precursors were expressed in endocrine insulinoma cells and analyzed for their regulated secretion. Deletion mutants revealed that the N-terminal domain and the Lys-Arg-(C-terminal tail) sequence were not critical for precursor sorting to secretory granules. In contrast, the Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin) sequence contained essential sorting information. Point mutation of all three dibasic sites within this sequence abolished regulated secretion. However, keeping intact any one of the three dibasic sequences was sufficient to maintain regulated secretion. Finally, fusing the dibasic-containing C-terminal domain of the precursor to the C terminus of beta-lactamase, a bacterial enzyme that is constitutively secreted when expressed in neuroendocrine cells, resulted in efficient sorting of the fusion protein to secretory granules in insulinoma cells. We conclude that dibasic motifs within the neuropeptide domain of proneurotensin/neuromedin N constitute a necessary and sufficient signal for sorting proteins to the regulated secretory pathway.  相似文献   

9.
To investigate the signals governing routing of biologically active peptides to the regulated secretory pathway, we have expressed mutated and non-mutated proneuropeptide Y (ProNPY) in pituitary-derived AtT20 cells. The mutations were carried out on dibasic cleavage site and or ProNPY C-terminal sequence. Targeting to the regulated secretory pathway was studied using protein kinase A (8-BrcAMP), protein kinase C (phorbol myristate acetate) specific activators and protein synthesis inhibitor cycloheximide, and by pulse chase. The analysis of expressed peptides in cells and culture media indicated that: neuropeptide Y (NPY) and ProNPY were differently secreted, whilst NPY was exclusively secreted via regulatory pathway; ProNPY was secreted via regulated and constitutive-like secretory pathways. ProNPY secretion behaviour was not Proteolytic cleavage efficiency-dependent. The dibasic cleavage was essential for ProNPY and NPY cAMP-dependent regulated secretion and may have function as a retention signal.  相似文献   

10.
SecA is an acidic, peripheral membrane protein involved in the translocation of secretory proteins across the cytoplasmic membrane. The direct interaction of SecA with secretory proteins was demonstrated by means of chemical cross-linking with 1-ethyl-3-(3-dimethylaminoprophyl)carbodiimide. OmpF-Lpp, a model secretory protein, carries either an uncleavable or cleavable signal peptide, and mutant secretory proteins derived from uncleavable OmpF-Lpp were used as translocation substrates. The interaction was SecA-specific. None of the control proteins, which are as acidic as SecA, was cross-linked with uncleavable OmpF-Lpp. The interaction was signal peptide-dependent. The interaction was increasingly enhanced as the number of positively charged amino acid residues at the amino-terminal region of the signal peptide was increased, irrespective of the species of amino acid residues donating the charge. Finally, parallelism was observed between the efficiency of interaction and that of translocation among mutant secretory proteins. It is suggested that precursors of secretory proteins interact with SecA to initiate the translocation reaction.  相似文献   

11.
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.  相似文献   

12.
Molecular sorting of proteins into the cisternal secretory pathway   总被引:1,自引:0,他引:1  
G A Scheele 《Biochimie》1988,70(9):1269-1276
Cotranslational translocation of exportable proteins across the RER membrane prior to their release into the extracellular space has been essentially described by use of canine pancreatic microsomal membranes. Intracisternal segregation of nascent secretory proteins was observed to be irreversible and proteolytic removal of signal sequences resulted in conformationally mature and stable proteins. Structural studies on various translocation peptides from both eukaryotic and prokaryotic preparations showed that many of them have a comparable three-domain organization. A hydrophilic amino-terminal domain is followed by a core region of hydrophobic amino acids and by the region in which the proteolytic cleavage occurs. Membrane components involved in the translocation process namely the signal recognition particle and the SRP receptor as well as the way the vectorial transport mechanism of nascent secretory proteins occurs are also discussed.  相似文献   

13.
Oshima Y  Fujimura A 《Cytokine》2003,24(1-2):36-45
The Glu residue in the helix A is conserved among many cytokines. Mutation in this residue converts some cytokines to an antagonist. Such an artificial cytokine with an antagonist activity may be useful in a clinical area. In this study we generated a mutant granulocyte colony-stimulating factor (G-CSF) termed G-CSF.E20K in which this residue is substituted to Lys. It is known that G-CSF binds to a homodimeric receptor, while other cytokines which can be converted to antagonists bind to heterodimeric receptors. We showed that G-CSF.E20K does not bind to the receptor at all, and that it fails to stimulate proliferation. Thus, the mutant did not act as an antagonist. We propose that the nature of the receptor, namely whether it is a homodimer or heterodimer, determines the antagonist activity of the mutant.  相似文献   

14.
T Su  R Cariappa  K Stanley 《FEBS letters》1999,453(3):391-394
In MDCK cells, N-glycans have been shown to determine the sorting of secretory proteins and membrane proteins to the apical domain in the absence of a dominant basolateral targeting signal. We have examined the sorting of endogenous proteins in ECV304 cells in the presence and absence of tunicamycin, an inhibitor of N-linked glycosylation. A prominent apically secreted protein of 71 kDa was not N-glycosylated and continued to be secreted apically in the presence of tunicamycin. In contrast, other endogenous proteins that were N-glycosylated were secreted preferentially into the basolateral medium or without polarity. When rat growth hormone was expressed in MDCK and ECV304 cells, we observed 65 and 94% of the secretion to the basolateral medium, respectively. Introduction of a single N-glycan caused 83% of the growth hormone to be secreted at the apical surface in MDCK cells but had no significant effect on the polarity of secretion of growth hormone in ECV304 cells. These results indicate that not all cell lines recognise N-glycans as a signal for apical sorting and raises the possibility of using ECV304 cells as a model system for analysis of apical sorting molecules.  相似文献   

15.
Assadi M  Sharpe JC  Snell C  Loh YP 《Biochemistry》2004,43(24):7798-7807
Prohormone convertase 2 (PC2) is a member of the subtilisin family of proteases involved in prohormone maturation in the granules of the regulated secretory pathway (RSP). It has been suggested that targeting of this enzyme to the RSP is dependent on its association with lipid rafts in membranes at the trans-Golgi network. Here, we investigate the orientation of PC2 in granule membranes and the role of the C-terminus in sorting of the enzyme to the RSP. Molecular modeling and circular dichroism showed that this domain of PC2 forms an alpha-helix and inserts into artificial membranes. Furthermore, we show that the C-terminus of PC2 can be biotinylated at the C-terminus in intact chromaffin granules, indicating that it is a transmembrane protein. To determine if the PC2 C-terminus is necessary for raft association and sorting, we transfected a chimera of CPEDelta15 (carboxypeptidase E without the last 15 residues) and the last 25 residues of PC2 (CPEDelta15-PC2), and a truncated PC2 mutant with the last 6 residues deleted (PC2Delta6) into Neuro2a cells. Whereas CPEDelta15 was not raft-associated or sorted to the RSP, addition of the 25 residues of PC2 C-terminus to CPEDelta15 restored raft association and localization to the RSP granules, as determined by immunocytochemistry. Deletion of the last 6 residues of PC2 eliminated lipid raft association and sorting of PC2Delta6 to the RSP. These results showed that the PC2 C-terminus confers raft association and is sufficient and necessary for sorting PC2 to the RSP.  相似文献   

16.
Caveolin-1 serves as the main coat protein of caveolae membranes, as an intracellular cholesterol shuttle, and as a regulator of diverse signaling molecules. Of the 12 residues conserved across all caveolin isoforms from all species examined to date, only Ser(80) and Ser(168) could serve as phosphorylation sites. We show here that mimicking chronic phosphorylation of Ser(80) by mutation to Glu (i.e. Cav-1(S80E)), blocks phosphate incorporation. However, Cav-1(S168E) is phosphorylated to the same extent as wild-type caveolin-1. Cav-1(S80E) targets to the endoplasmic reticulum membrane, remains oligomeric, and maintains normal membrane topology. In contrast, Cav-1(S80A), which cannot be phosphorylated, targets to caveolae membranes. Some exocrine cells secrete caveolin-1 in a regulated manner. Cav-1(S80A) is not secreted by AR42J pancreatic adenocarcinoma cells even in the presence of dexamethasone, an agent that induces the secretory phenotype. Conversely, Cav-1(S80E) is secreted to a greater extent than wild-type caveolin-1 following dexamethasone treatment. We conclude that caveolin-1 phosphorylation on invariant serine residue 80 is required for endoplasmic reticulum retention and entry into the regulated secretory pathway.  相似文献   

17.
A growing number of yeast and mammalian plasma membrane proteins are reported to be modified with K63-linked ubiquitin (Ub) chains. However, the relative importance of this modification versus monoubiquitylation in endocytosis, Golgi to endosome traffic, and sorting into the multivesicular body (MVB) pathway remains unclear. In this study, we show that K63-linked ubiquitylation of the Gap1 permease is essential for its entry into the MVB pathway. Carboxypeptidase S also requires modification with a K63-Ub chain for correct MVB sorting. In contrast, monoubiquitylation of a single target lysine of Gap1 is a sufficient signal for its internalization from the cell surface, and Golgi to endosome transport of the permease requires neither its ubiquitylation nor the Ub-binding GAT (Gga and Tom1) domain of Gga (Golgi localizing, gamma-ear containing, ARF binding) adapter proteins, the latter being crucial for subsequent MVB sorting of the permease. Our data reveal that K63-linked Ub chains act as a specific signal for MVB sorting, providing further insight into the Ub code of membrane protein trafficking.  相似文献   

18.
The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells.  相似文献   

19.
Tompa P  Prilusky J  Silman I  Sussman JL 《Proteins》2008,71(2):903-909
Targeted turnover of proteins is a key element in the regulation of practically all basic cellular processes. The underlying physicochemical and/or sequential signals, however, are not fully understood. This issue is particularly pertinent in light of the recent recognition that intrinsically unstructured/disordered proteins, common in eukaryotic cells, are extremely susceptible to proteolytic degradation in vitro. The in vivo half-lives of proteins were determined recently in a high-throughput study encompassing the entire yeast proteome; here we examine whether these half-lives correlate with the presence of classical degradation motifs (PEST region, destruction-box, KEN-box, or the N-terminal residue) or with various physicochemical characteristics, such as the size of the protein, the degree of structural disorder, or the presence of low-complexity regions. Our principal finding is that, in general, the half-life of a protein does not depend on the presence of degradation signals within its sequence, even of ubiquitination sites, but correlates mainly with the length of its polypeptide chain and with various measures of structural disorder. Two distinct modes of involvement of disorder in degradation are proposed. Susceptibility to degradation of longer proteins, containing larger numbers of residues in conformational disorder, suggests an extensive function, whereby the effect of disorder can be ascribed to its mere physical presence. However, after normalization for protein length, the only signal that correlates with half-life is disorder, which indicates that it also acts in an intensive manner, that is, as a specific signal, perhaps in conjunction with the recognition of classical degradation motifs. The significance of correlation is rather low; thus protein degradation is not determined by a single characteristic, but is a multi-factorial process that shows large protein-to-protein variations. Protein disorder, nevertheless, plays a key signalling role in many cases.  相似文献   

20.
A precise pH gradient between organelles of the regulated secretory pathway is required for sorting and processing of prohormones. We studied pH regulation in live endocrine cells by targeting biotin-based pH indicators to cellular organelles expressing avidin-chimera proteins. In AtT-20 cells, we found that steady-state pH decreased from the endoplasmic reticulum (ER) (pH(ER) = 7.4 +/- 0.2, mean +/- S.D.) to Golgi (pH(G) = 6.2 +/- 0.4) to mature secretory granules (MSGs) (pH(MSG) = 5.5 +/- 0.4). Golgi and MSGs required active H(+) v-ATPases for acidification. ER, Golgi, and MSG steady-state pH values were also dependent upon the different H(+) leak rates across each membrane. However, neither steady-state pH(MSG) nor rates of passive H(+) leak were affected by Cl(-)-free solutions or valinomycin, indicating that MSG membrane potential was small and not a determinant of pH(MSG). Therefore, our data do not support earlier suggestions that organelle acidification is primarily regulated by Cl(-) conductances. Measurements of H(+) leak rates, buffer capacities, and estimates of surface areas and volumes of these organelles were applied to a mathematical model to determine the H(+) permeability (P(H+)) of each organelle membrane. We found that P(H+) decreased progressively from ER to Golgi to MSGs, and proper acidification of Golgi and MSGs required gradual decreases in P(H+) and successive increases in the active H(+) pump density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号